Skip to main content

An introduction to the homogenization method in optimal design

  • Chapter
  • First Online:
Optimal Shape Design

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1740))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 65.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artstein Z., “Look for the extreme points,” SIAM Review 22 (1980), 172–185.

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška I., “Homogenization and its application. Mathematical and computational problems,” Numerical Solution of Partial Differential Equations-III, (SYNSPADE 1975, College Park MD, May 1975), Academic Press, New York, 1976, 89–116.

    Google Scholar 

  3. Bensoussan A. & Lions J.-L. & Papanicolaou G., Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications 5. North-Holland, Amsterdam 1978.

    MATH  Google Scholar 

  4. Bergman D., “Bulk physical properties of composite media,” Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983), 1–128, Collect. Dir. Etudes Rech. Elec. France, 57, Eyrolles, Paris, 1985.

    Google Scholar 

  5. Braidy P. & Pouilloux D., Mémoire d'Option, Ecole Polytechnique, 1982, unpublished.

    Google Scholar 

  6. Optimization of distributed parameter structures, Vol. I, II, J. Céa & E. J. Haug eds. Proceedings of the NATO Advanced Study Institute on Optimization of Distributed Parameter Structural Systems, Iowa City, May 20–June 4, 1980. NATO advanced Study Institute Series E: Applied Sciences, 49, 50, Martinus Nijhoff Publishers, The Hague, 1981.

    Google Scholar 

  7. Céa J. & Malanowski K., “An example of a max-min problem in partial differential equations,” SIAM J. Control 8 1970, 305–316.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chenais D., “Un ensemble de variétés à bord Lipschitziennes dans RN: compacité, théorème de prolongements dans certains espaces de Sobolev,” C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Aiii, A1145–A1147.

    MathSciNet  MATH  Google Scholar 

  9. De Giorgi E. & Spagnolo S., “Sulla convergenza degli integrali dell'energia per operatori ellitici del 2 ordine,” Boll. Un. Mat. Ital. (4) 8 (1973), 391–411.

    MathSciNet  MATH  Google Scholar 

  10. Francfort G. & Murat F., “Homogenization and Optimal Bounds in Linear Elasticity”, Arch. Rational Mech. Anal., 94, 1986, 307–334.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gutiérrez S., “Laminations in Linearized Elasticity and a Lusin type Theorem for Sobolev Spaces,” PhD thesis, Carnegie-Mellon University, May 1997.

    Google Scholar 

  12. Hashin Z. & Shtrikman S., “A variational approach to the theory of effective magnetic permeability of multiphase materials”, J. Applied Phys. 33, (1962) 3125–3131.

    Article  MATH  Google Scholar 

  13. Joseph D., Stability of fluid motions I, II, Springer Tracts in Natural Philosophy, Vol. 27, 28, Springer-Verlag, Berlin-New York, 1976.

    Chapter  Google Scholar 

  14. Keller J., “A theorem on the conductivity of a composite medium,” J. Mathematical Phys. 5 (1964) 548–549.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lions J.-L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod-Gauthier-Villars, Paris, 1968.

    MATH  Google Scholar 

  16. Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

    MATH  Google Scholar 

  17. Lions J.-L., “Asymptotic behaviour of solutions of variational inequalities with highly oscillating coefficients,” Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975), pp. 30–55. Lecture Notes in Math., 503. Springer, Berlin, 1976.

    Chapter  Google Scholar 

  18. Lur'ie K. A., “On the optimal distribution of the resistivity tensor of the working substance in a magnetohydrodynamic channel,” J. Appl. Mech. (PMM) 34 (1970), 255–274.

    Article  MathSciNet  Google Scholar 

  19. Marino A. & Spagnolo S., “Un tipo di approssimazione dello operatore ΣijDi(aij Dj) con operatori ΣjDj(b Dj),” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 23 (1969), 657–673.

    MathSciNet  Google Scholar 

  20. McConnell W., “On the approximation of elliptic operators with discontinuous coefficients,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 1, 123–137.

    MathSciNet  Google Scholar 

  21. Meyers N., “An Lp-estimate for the gradient of solutions of second order elliptic divergence equations,” Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189–206.

    MathSciNet  MATH  Google Scholar 

  22. Mortola S. & Steffé S., Unpublished report, Scuola Normale Superiore, Pisa.

    Google Scholar 

  23. Mortola S. & Steffé S., “A two-dimensional homogenization problem,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 78 (1985), no. 3, 77–82.

    MathSciNet  MATH  Google Scholar 

  24. Murat F., “Un contre-exemple pour le problème du contrôle dans les coefficients,” C. R. Acad. Sci. Paris, Sér. A-B 273 (1971), A708–A711.

    MathSciNet  Google Scholar 

  25. Murat F., “Théorèmes de non-existence pour des problèmes de contrôle dans les coefficients,” C. R. Acad. Sci. Paris, Sér. A-B 274 (1972), A395–A398.

    MathSciNet  Google Scholar 

  26. Murat F., “H-convergence,” Séminaire d'analyse fonctionnelle et numérique, Université d'Alger, 1977–78. Translated into English as Murat F. & Tartar L., “H-convergence,” Topics in the mathematical modelling of composite materials, 21–43, Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, 1997.

    Google Scholar 

  27. Murat F., “Compacité par compensation,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 489–507.

    MathSciNet  MATH  Google Scholar 

  28. Murat F. & Simon J., “Sur le contrôle par un domaine géométrique” Publication 76015, Laboratoire d'Analyse Numérique, Université Paris 6, 1976.

    Google Scholar 

  29. Murat F. & Tartar L., “Calcul des variations et homogénéisation,” Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983), 319–369, Collect. Dir. Etudes Rech. Elec. France, 57, Eyrolles, Paris, 1985. Translated into English as “Calculus of variations and homogenization,” Topics in the mathematical modelling of composite materials, 139–173, Prog. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, M A, 1997.

    Google Scholar 

  30. Murat F. & Tartar L., “Optimality conditions and homogenization,” Nonlinear variational problems (Isola d'Elba, 1983), 1–8, Res. Notes in Math., 127, Pitman, Boston, Mass.-London, 1985.

    Google Scholar 

  31. Raitum U.E., “The extension of extremal problems connected with a linear elliptic equation,” Soviet Math. Dokl. 19, (1978), 1342–1345.

    MathSciNet  Google Scholar 

  32. Sanchez-Palencia E., “Solutions périodiques par rapport aux variables d'espaces et applications,” C. R. Acad. Sci. Paris, Sér. A-B 271 (1970), A1129–A1132.

    MathSciNet  Google Scholar 

  33. Sanchez-Palencia E., “Equations aux dérivées partielles dans un type de milieux hétérogènes,” C. R. Acad. Sci. Paris, Sér. A-B 272 (1972), A395–A398.

    Google Scholar 

  34. Simon L., “On G-convergence of elliptic operators,” Indiana Univ. Math. J. 28 (1979), no. 4, 587–594.

    Article  MathSciNet  MATH  Google Scholar 

  35. Spagnolo S., “Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore,” Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 657–699.

    MathSciNet  MATH  Google Scholar 

  36. Spagnolo S., “Sulla convergenza di soluzioni di equazioni paraboliche ed ellitiche,” Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 571–597.

    MATH  Google Scholar 

  37. Tartar L., “Convergence d'opérateurs différentiels,” Atti Giorni Analisis Convessa e Applicazioni (Roma, 1974), 101–104.

    Google Scholar 

  38. Tartar L., “Problèmes de contrôle des coefficients dans des équations aux dérivées partielles,” Control theory, numerical methods and computer systems modelling (Internat. Sympos., IRIA LABORIA, Rocquencourt, 1974), pp. 420–426. Lecture Notes in Econom. and Math. Systems, Vol. 107, Springer, Berlin, 1975. Translated into English as Murat F. & Tartar L., “On the control of coefficients in partial differential equations,” Topics in the mathematical modelling of composite materials, 1–8, Prog. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, MA, 1997.

    Google Scholar 

  39. Tartar L., “Quelques remarques sur l'homogénéisation,” Functional analysis and numerical analysis (Tokyo and Kyoto, 1976), 469–481, Japan Society for the Promotion of Science, Tokyo, 1978.

    Google Scholar 

  40. Tartar L., “Weak convergence in nonlinear partial differential equations,” Existence Theory in Nonlinear Elasticity, 209–218. The University of Texas at Austin, 1977.

    Google Scholar 

  41. Tartar L., “Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires,” Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 228–241, Lecture Notes in Math., 665, Springer, Berlin, 1978.

    Chapter  Google Scholar 

  42. Tartar L., “Nonlinear constitutive relations and homogenization,” Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro), pp. 472–484, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978.

    Google Scholar 

  43. Tartar L., “Estimations de coefficients homogénéisés,” Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I, pp. 364–373, Lecture Notes in Math., 704, Springer, Berlin, 1979. Translated into English as “Estimations of homogenized coefficients,” Topics in the mathematical modelling of composite materials, 9–20, Prog. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, MA, 1997.

    Chapter  Google Scholar 

  44. Tartar L., “Compensated compactness and applications to partial differential equations,” Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pp. 136–212. Res. Notes in Math., 39, Pitman, San Francisco, Calif., 1979.

    Google Scholar 

  45. Tartar L., “Estimations fines des coefficients homogénéisés,” Ennio De Giorgi colloquium (Paris, 1983), 168–187, Res. Notes in Math., 125, Pitman, Boston, MA-London, 1985.

    Google Scholar 

  46. Tartar L., “Remarks on homogenization,” Homogenization and effective moduli of materials and media (Minneapolis, Minn., 1984/1985), 228–246, IMA Vol. Math. Appl., 1, Springer, New York-Berlin, 1986.

    Chapter  Google Scholar 

  47. Tartar L., “The appearance of oscillations in optimization problems,” Nonclassical continuum mechanics (Durham, 1986), 129–150, London Math. Soc. Lecture Note Ser., 122, Cambridge Univ. Press, Cambridge-New York, 1987.

    Chapter  Google Scholar 

  48. Tartar L., “H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,” Proc. Roy. Soc. Edinburgh Sect. A115, (1990), no. 3–4, 193–230.

    Article  MathSciNet  MATH  Google Scholar 

  49. Tartar L., “Remarks on Optimal Design Problems,” Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), 279–296, Ser. Adv. Math. Appl. Sci., 18, World Sci. Publishing, River Edge, NJ, 1994.

    Google Scholar 

  50. Tartar L., “Remarks on the homogenization method in optimal design problems,” Homogenization and applications to material sciences (Nice, 1995), 393–412, GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkokotosho, Tokyo, 1995.

    Google Scholar 

  51. Young, L. C., Lectures on the Calculus of Variation and Optimal Control Theory, (W. B. Saunders, Philadelphia: 1969).

    MATH  Google Scholar 

  52. Zolezzi T., “Teoremi d'esistensa per problemi di controllo ottimo retti da equazioni ellittiche o paraboliche,” Rend. Sem. Mat. Padova, 44 (1970), 155–173.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arrigo Cellina António Ornelas

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Tartar, L. (2000). An introduction to the homogenization method in optimal design. In: Cellina, A., Ornelas, A. (eds) Optimal Shape Design. Lecture Notes in Mathematics, vol 1740. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106742

Download citation

  • DOI: https://doi.org/10.1007/BFb0106742

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67971-4

  • Online ISBN: 978-3-540-44486-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics