Skip to main content
Log in

Maternal nutrition, fetal weight, body composition and disease in later life

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Nutritional and hormonal milieu in utero affect fetal growth. Both parties involved have an independent chance, for the occurrence of a developmental error at any stage of their constant developing system. Studies suggest that pregnancy outcome is associated with fetal demand for nutrients and the materno-placental capacity to meet that demand. Failure of the materno-placental supply line to satisfy fetal nutrient requirements results in a range of fetal adaptations and developmental changes, and may lead to permanent alterations in the body’s structure and metabolism, and thereby to cardiovascular and metabolic disease in adult life. Changes in the in-utero homeostasis may lead to programming of endocrine and metabolic systems so that feedback systems and reactions are permanently changed. At the present stage, short- and long-term hazards of intra-uterine growth retardation (IUGR) have been identified, but preventive strategies are still lacking. It is unlikely that a single factor will reduce a multicausal outcome like IUGR. Appropriate population-specific interventions should be a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Castle WE, Gregory PW. The embryonic basis of size inheritance in the rabbit. J Morphol Physiol 1929, 48: 81–4.

    Article  Google Scholar 

  2. Kleemann DO, Walker SK, Seamark RF. Enhanced fetal growth in sheep administered progesterone during the first three days of pregnancy. J Reprod Fertil 1994, 102: 411–7.

    Article  PubMed  CAS  Google Scholar 

  3. Walker SK, Hill JL, Kleemann DO, Nancarrow CD. Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol Reprod 1996, 55: 703–8.

    Article  PubMed  CAS  Google Scholar 

  4. Creasy RK, Resnik R. Intrauterine growth restriction. In: Creasy RK, Resnik R eds. Maternal-fetal medicine: principles and practice. 3rd ed. Philadelphia: Saunders 1994, 558-74.

  5. Woods KA, Camacho-Hubner C, Barter D, Clark AJ, Savage MO. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr 1997, 423 (suppl.): 39–45.

    Article  CAS  Google Scholar 

  6. Lucas A. Programming by early nutrition in man. In: Bock OR, Whelan J eds. The childhood environment and adult disease. Chichester: John Wiley and Sons 1991, 38-55.

  7. Barker DJP. Fetal origins of coronary heart disease. BMJ 1995, 311: 171–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Barker DJP. Mothers, babies and health in later life. Edinburgh: Harcourt Brace & Co Ltd 1998.

    Google Scholar 

  9. Rondo PH, Abbott R, Rodrigues LC, Tomkins AM. Vitamin A, folate, and iron concentrations in cord and materna blood of intra-uterine growth retarded and appropriate birth weight babies. Eur J Clin Nutr 1995, 49: 391–9.

    PubMed  CAS  Google Scholar 

  10. Krook A, Brueton L, O’Rahilly S. Homozygous nonsense mutation in the insulin receptor gene in infant with lep-rechanism. Lancet 1993, 342: 227–8.

    Article  Google Scholar 

  11. Gluckman PD. The endocrine regulation of fetal growth in late gestation. The role of insulin-like growth factors. J Clin Endocrinol Metab 1995, 80: 1047–50.

    PubMed  CAS  Google Scholar 

  12. Fall CH, Pandit AN, Law CM, et al. Size at birth and plasma insulin-like growth factor-1 concentrations. Arch Dis Child 1995, 73: 287–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Yang W, Yu JS. Relationship of insulin-like growth factor-l, insulin-like growth factor binding protein-3, insulin, growth hormone in cord blood and maternal factors with birth height and birthweight. Pediatr Int 2000, 42: 31–6.

    Article  PubMed  CAS  Google Scholar 

  14. Straus DS, Ooi GT, Orlowski CC, Rechle MM. Expression of the genes for insulin-like growth factor-I (IGF-I) IGF-I and IGF-binding proteins-1 and 2 in fetal rat under conditions of intrauterine growth retardation caused by fasting. Endocrinology 1991, 128: 518–25.

    Article  PubMed  CAS  Google Scholar 

  15. Gluckman PD, Gunn AJ, Wray A, et al. Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. International Board of the Kabi Pharmacia International Growth Study. Pediatrics 1992, 121: 920–3.

    Article  CAS  Google Scholar 

  16. Freemark M, Comer M, Mularoni T, D’Ercole AJ, Granois A, Kodack L. Nutritional regulation of the placental lactogen receptor in fetal liver: implications for fetal metabolism and growth. Endocrinology 1989, 125: 1504–12.

    Article  PubMed  CAS  Google Scholar 

  17. Osmond C, Barker DJP, Winter PD, Fall CHD, Simmonds SJ. Early growth and death from cardiovascular disease in women. BMJ 1993, 307: 1519–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Hales CN, Barker DJP, Clark PMS. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991, 303: 1019–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Crawford MA, Doyle W, Leaf A, Leighfield M, Ghebremeskel K, Phylactos A. Nutrition and neurodevel-opmental disorders. Hum Nutr 1993, 9: 81–97.

    CAS  Google Scholar 

  20. De Onis M, Villar J, Gulmezoglu M. Nutritional interventions to prevent intrauterine growth retardation: evidence from randomized controlled trials. Eur J Clin Nutr 1998, 52: s83–93.

    PubMed  Google Scholar 

  21. Richter J, Hajek Z, Pfeifer I, Subrt P. Relation between concentration of lead, zinc and lysozyme in placentas of women with intrauterine foetal growth retardation. Cent Eur J Public Health 1999, 7: 40–2.

    PubMed  CAS  Google Scholar 

  22. Srivastava S, Mehrotra PK, Srivastava SP, Tandon I, Siddiqui MK. Blood lead and zinc in pregnant women and their offspring in intrauterine growth retardation cases. J Ana Toxicol 2001, 25: 461–5.

    Article  CAS  Google Scholar 

  23. A noninvasive approach to body composition in the neonate: dynamic skinfold measurements. Pediatr Res. 1974, 8: 215–22.

  24. Elliot K, Knight J eds. Size at birth. Ciba foundation symposium no 27. Amsterdam: Elssevier 1970.

    Google Scholar 

  25. Rubaltelli FF, Formentin PA, Tato L. Ammonia nitrogen, urea and uric acid blood levels in normal and hypodys-trophic newborns. Biol Neonate 1970, 15: 129–34.

    Article  PubMed  CAS  Google Scholar 

  26. Jacobsen BB, Peitersen B, Andersen HJ, Hummer L. Serum concentrations of thyroxine-binding globulin, prealbumin and albumin in healthy fullterm, small-for-gestational age and preterm newborn infants. Acta Paediatr Scand 1979, 68: 49–55.

    Article  PubMed  CAS  Google Scholar 

  27. Chandra RK. Fetal malnutrition and postnatal immuno-competence. Am J Dis Child 1975, 129: 450–4.

    PubMed  CAS  Google Scholar 

  28. Saha K, Kaur P, Srivastava G, Chaudhury DS. A six-months’ follow-up study of growth, morbidity and functional immunity in low birth weight neonates with special reference to intrauterine growth retardation in small-for-gestational-age infants. J Trop Pediatr 1983, 29: 278–82.

    Article  PubMed  CAS  Google Scholar 

  29. Bhakoo ON, Scopes JW. Minimal rates of oxygen consumption in small-for-dates babies during the first week of life. Arch Dis Child 1974, 49: 583–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Hay WW Jr. Fetal and neonatal glucose homeostasis and their relation to the small for gestational age infant. Semin Perinatol 1984, 8: 101–16.

    PubMed  Google Scholar 

  31. Karlberg J, Albertsson-Wikland K. Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res 1995, 38: 733–9.

    Article  PubMed  CAS  Google Scholar 

  32. Hokken-Koelega AC, de Ridder MA, van Lemmen RJ, et al. Children born small for gestational age: do they catch up? Pediatr Res 1995, 38: 267–71.

    Article  PubMed  CAS  Google Scholar 

  33. Fitzhardinge PM, Steven EM. The small-for-date infant later growth patterns. Pediatrics 1972, 49: 671–81.

    PubMed  CAS  Google Scholar 

  34. Eriksson JG, Forsen T, Tuomilehto, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 1999, 318: 427–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Badverker A, Yajnik CS, Fall CHD, et al. Insulin resistance syndrome in 8 year old Indian children. Small at birth, big at 8 years, or both? Diabetes 1999, 48: 2422–9.

    Article  Google Scholar 

  36. Williams S, St. George IM, Silva PN. Intrauterine growth retardation and blood pressure at age seven and eighteen. J Clin Epidermiol 1992, 45: 1257–63.

    Article  CAS  Google Scholar 

  37. Barker DIP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. 1993 Type 2 (non- insulin-dependent) diabetes mellitus, hypertension and hyper-lipidaemia (syndrome X)- relation to reduced fetal growth. Diabetologia 36: 62–7.

    Article  PubMed  CAS  Google Scholar 

  38. Sas T, Mulder P, Hokken-Koelega A. Body Composition, Blood Pressure, and Lipid Metabolism before and during Long-Term Growth Hormone (GH) Treatment in Children with Short Stature Born Small for Gestational Age Either with or without GH Deficiency. Clin Endocrinol Metab 2000, 85: 3786–92.

    CAS  Google Scholar 

  39. Phipps K, Barker Dl, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia 1993, 36: 225–8.

    Article  PubMed  CAS  Google Scholar 

  40. Hawdon IM, Hey E, Kolvin I, Fundudis T. Born too small-is outcome still affected? Dev Med Child Neurol 1990, 32: 943–53.

    Article  PubMed  CAS  Google Scholar 

  41. Low IA, Handley-Derry MH, Burcke SO. Association of intrauterine fetal growth retardation and learning deficits at age 9 to 11 years. Am I Obstet Gynecol 1992, 167: 1499–505.

    Article  CAS  Google Scholar 

  42. Critical evaluation of the safety of recombinant human growth hormone administration: Statement from the growth hormone research society. J Clin Endocrinol Metab 2001, 86: 1868–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zadik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadik, Z. Maternal nutrition, fetal weight, body composition and disease in later life. J Endocrinol Invest 26, 941–945 (2003). https://doi.org/10.1007/BF03345248

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345248

Key-words

Navigation