Skip to main content
Log in

Effect of photoperiod and temperature on resistance againstPhytophthora infestans in susceptible and resistant potato cultivars: Effect on deposition of structural phenolics on the cell wall and resistance to penetration

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Deposition of phenolic compounds before and after inoculation withPhytophthora infestans was evaluated in two Mexican cultivars (Malinche and Tollocan) with major unknown R genes for resistance to potato late blight, two cultivars (393295.236=CIP1 and 391046.22=CIP2) without R genes from the International Potato Center (CIP) and the susceptible cultivar Atlantic. Before inoculation, plants were grown in growth chambers at two temperatures (16 or 24 C) and two photoperiods (PPD 12 or 16 h day length). Forty-eight hours after inoculation, the number of penetrations was recorded and depositions of phenolic compounds were classified according to detection and location in (a) the anticlinal cell wall, (b) the whole cell, (c) the stomatal cells, and (d) without detectable depositions of phenolic compounds. The concentration of phenolic compounds in the epidermal cells was slightly increased at 16 C and 16 h PPD and penetration frequency was lower at 16 C (12 h PPD). Concentration of phenolic compounds was not correlated with penetration frequency, but was correlated with the resistance level of the different potato cultivars. Atlantic had the highest number of penetrations followed by Tollocan, CIP1, CIP2, and Malinche. The cytological observations indicated that four types of deposition of phenolic compounds occurred in all five potato cultivars irrespective of their type and level of resistance. These results suggest that deposition of phenolic compounds on epidermal cells is a general resistance mechanism in potato leaves that does not have a specific relation with resistance to the penetration ofP. infestans. Phenolic depositions were intrinsically similar in potato cultivars with and without R genes, which stresses the difficulty in differentiating between horizontal and vertical resistance.

Resumen

La deposición de compuestos fenólicos antes y después de la inoculación conPhytophthora infestans fue evaluada en dos cultivares mexicanos (Malinche y Tollocan) con genes mayores R desconocidos para resistencia al tizón tardío de la papa, dos cultivares (393295.236=CIP1 y 391046.22=CIP2) del Centro Internacional de la Papa (CIP), sin genes R y el cultivar Atlantic. Antes de la inoculación, las plantas estuvieron en cámaras de crecimiento a dos temperaturas (16 o 24 C) y dos foto períodos (FP 12 o 16 horas de longitud de día). Cuarenta y ocho horas después de la inoculación, se registró el número de penetraciones y se clasificó la deposición de compuestos fenólicos de acuerdo con la detección y localización en (a) pared celular anticlinal, (b) toda la célula, (c) células estomatales y (d) sin deposiciones detectables. La concentración de los compuestos fenólicos en las células epidérmicas se incrementó ligeramente a 16 C y 16 horas de FP y la frecuencia de penetración fue más baja a 16 C y 12 horas de FP. La concentración de compuestos fenólicos no estuvo correlacionada con la frecuencia de penetración, pero si con el nivel de resistencia de los diferentes cultivares de papa. Atlantic tuvo en mayor número de penetraciones seguido por Tollocan, CIP1, CIP2 y Malinche. Las observaciones citológicas indicaron que se realizan cuatro tipos de deposición de compuestos fenólicos en los cinco cultivares, independientemente de su tipo y nivel de resistencia. Estos resultados sugieren que la deposición sobre las células epidérmicas es un mecanismo general de resistencia en las hojas de papa que no tiene relación específica con la resistencia a la penetración deP. infestans. Las deposiciones fenólicas fueron intrínsicamente similares en cultivares con y sin genes R, lo cual acentúa la dificultad de diferenciar entre resistencia vertical y horizontal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Beckman CH. 2000. Phenolic-storing cells keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants. Physiol Molec Plant Pathol 57:101–110.

    Article  CAS  Google Scholar 

  • Buschmann C and HK Lichtenthaler. 1997. Principles and characteristics of multi-colour fluorescence imaging of plants. J Plant Physiol 152:297–314.

    Google Scholar 

  • Cuypers B and K Hahlbrock. 1988. Inmunohistochemical studies of compatible and incompatible interactions of potato leaves withPhytophthora infestans and of the non-host response toPhytophthora megasperma. Can J Bot 66:700–705.

    Article  Google Scholar 

  • Dan K and S Imada. 2002. Light exposure affects phenolic contents and lipid peroxidation in cabbage seedlings held at low temperatures. J Japan Soc Hort Sci 71(1): 82–86.

    Article  CAS  Google Scholar 

  • Freytag S, N Arabatzis, K Hahlbrock and E Schmelzer. 1994. Reversible cytoplasmic rearrangements precede wall apposition, hypersensitive cell death and defense-related gene activation in potato /Phytophthora infestans interactions. Planta 194:123–135.

    Article  CAS  Google Scholar 

  • Friend J. 1981. Plant phenolics, lignification and plant disease. Prog Phytochem 7:197–261.

    CAS  Google Scholar 

  • Gees R and HR Hohl. 1988. Cytological comparison of specific (R3) and general resistance to late blight in potato leaf tissue. Phytopathology 78(3): 350–357.

    Article  Google Scholar 

  • Hammerschmidt R. 1984. Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato. Physiol Plant Pathol 24:33–42.

    CAS  Google Scholar 

  • Hammerschmidt R and RL Nicholson. 1999. A survey of plant defense responses to pathogens.In: AA Agrawal, S Tuzun and E Bent (eds), Induced Plant Defenses Against Pathogens and Herbivores. APS Press, St. Paul, MN. pp 55–71.

    Google Scholar 

  • Harder DE, DJ Samborski, R Rohringer, S Rimmer, W Kim and J Chong. 1979. Electron microscopy of susceptible and resistant near-isogenic (sr6/Sr6) lines of wheat are infected byPuccinia graminis tritici. III Ultrastucture of incompatible reactions. Can J Bot 57:2626–2634.

    Article  Google Scholar 

  • Islam S, M Yoshimoto, K Ishiguro, S Okuno and O Yamakawa. 2003. Effect of artificial shading and temperature on radical scavenging activity and polyphenolic composition in sweet potato (Ipomoea batatas L.) leaves. J Amer Soc Hort Sci 128(2):182–187.

    CAS  Google Scholar 

  • Jenns AE and KJ Leonard. 1985. Effects of temperature and illuminance on resistance of inbred lines of corn to isolates ofBipolaris maydis. Phytopathology 75:274–280.

    Google Scholar 

  • Landeo JA. 1997. Strategies on breeding for resistance to late blight in potato at CIP. Memorias del Simposium Internacional de la Papa. Toluca México INIFAP 9–17.

  • Lichtenthaler HK and JA Mieh. 1997. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci (TIPS) 2:316–320.

    Article  Google Scholar 

  • Métraux JP and I Raskin. 1993. Role of phenolics in plant disease resistance.In: I Chet (ed), Biotechnology in Plant Disease Control. Willey-Liss, Inc. pp 191–209.

  • Niemira BA, WW Kirk and JM Stein. 1999. Screening for late blight susceptibility in potato tubers by digital analysis of cut tuber surfaces. Plant Dis 83:469–473.

    Article  Google Scholar 

  • O’Brien TP, N Feder and ME McCully. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373.

    Article  CAS  Google Scholar 

  • Ride JP. 1978. The role of cell wall alterations in resistance to fungi. Ann Appl Biol 89:302–306.

    Google Scholar 

  • Röthlisberger A, U Heiniger and HR Hohl. 1984. Correlations between protoplast yield, tissue browning and late blight resistance in potato cultivars and wildSolanum spp. Bot Helv 94:295–299.

    Google Scholar 

  • Rubio-Covarrubias OA, DS Douches, R Hammerschmidt, A daRocha and WW Kirk. 2005. Effect of temperature and photoperiod on symptoms associated with resistance toPhytophthora infestans after leaf penetration in susceptible and resistant potato cultivars. Amer J Potato Res 82:153–160.

    Article  Google Scholar 

  • Tso TC, MJ Kasperbauer and TP Sorokin. 1970. Effect of photoperiod and end-of-day light quality on alkaloids and phenolic compounds of tobacco. Plant Physiol 45:330–333.

    PubMed  CAS  Google Scholar 

  • Vleeshouwers VGAA, W van Dooijeweert, F Govers, S Kamoun and LT Colon. 2000. The hypersensitive response is associated with host and nonhost resistance toPhytophthora infestans. Planta 210:853–864.

    Article  PubMed  CAS  Google Scholar 

  • Wynn WK and RC Staples. 1982. Tropisms of fungi in host recognition.In: RC Staples and GH Roeniessen (eds), Plant Disease Control: Resistance and Susceptibility. John Willey & Sons, Inc., New York. pp 45–69.

    Google Scholar 

  • Wilson UE and MD Coffey. 1980. Cytological evaluation of general resistance toPhytophthora infestans in potato foliage. Ann Bot 45:81–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Kirk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio-Covarrubias, O.A., Douches, D.S., Hammerschmidt, R. et al. Effect of photoperiod and temperature on resistance againstPhytophthora infestans in susceptible and resistant potato cultivars: Effect on deposition of structural phenolics on the cell wall and resistance to penetration. Am. J. Pot Res 83, 325–334 (2006). https://doi.org/10.1007/BF02871593

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02871593

Additional Key Words

Navigation