Skip to main content
Log in

Determination of total arsenic concentrations in nails by inductively coupled plasma mass spectrometry

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The analysis of trace elements in biological samples will extend our understanding of the impact that environmental exposure to these elements has on human health. Measuring arsenic content in nails has proven useful in studies evaluating the chronic body burden of arsenic. In this study, we developed methodology with inductively coupled plasma-mass spectrometry (ICP-MS) for the determination of total arsenic in nails. We assessed the utility of the washing procedures for removing surface contamination. Four types of preanalysis treatments (water bath, sonication, water bath plus sonication, and control) after sample decomposition by nitric acid were compared to evaluate the digestion efficiencies. In addition, we studied the stability of the solution over 1 wk and the effect of acidity on the arsenic signal. Arsenic content in the digested solution was analyzed by using Ar-N2 plasma with Te as the internal standard. The results suggest that washing once with 1% Triton Χ-100 for 20 min for cleaning nail samples prior to ICP-MS analysis is satisfactory. Repeated measurement analysis of variance revealed that there was no significant difference among the various sample preparation techniques. Moreover, the measurements were reproducible within 1 wk, and acidity seemed to have no substantial influence on the arsenic signal. A limit of detection (on the basis of three times the standard deviation of the blank measurement) of 7 ng As/g toenail was achieved with this system, and arsenic recoveries from reference materials (human hair and nails) were in good agreement (95–106% recovery) with the certified/reference values of the standard reference materials. ICP-MS offers high accuracy and precision, as well as highthroughput capacity in the analysis of total arsenic in nail samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Bates, A. H. Smith, and C. Hopenhayn-Rich, Arsenic ingestion and internal cancers: a review [see comments],Am. J. Epidemiol. 135, 462–476 (1992).

    PubMed  CAS  Google Scholar 

  2. C. J. Chen, Y. C. Chuang, T. M. Lin, and H. Y. Wu, Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers,Cancer Res. 45, 5895–5899 (1985).

    PubMed  CAS  Google Scholar 

  3. C. J. Chen, C. W. Chen, M. M. Wu, and T. L. Kuo, Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water,Br. J. Cancer 66, 888–892 (1992).

    PubMed  CAS  Google Scholar 

  4. R. Heddle and G. D. Bryant, Small cell lung carcinoma and Bowen’s disease 40 years after arsenic ingestion,Chest 84, 776–777 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. K. Murata, T. Iwazawa, T. Takayama, K. Yamashita, and K. Okagawa, Quadruple cancer including Bowen’s disease after arsenic injections 40 years earlier: report of a case,Surg. Today 24, 1115–1118 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. A. H. Smith, C. Hopenhayn-Rich, M. N. Bates, H. M. Goeden, I. Hertz-Picciotto, H. M. Duggan, et al., Cancer risks from arsenic in drinking water [see comments],Environ. Health Perspect. 97, 259–267 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. H. A. Peters, W. A. Croft, E. A. Woolson, B. A. Darcey, and M. A. Olson, Seasonal arsenic exposure from burning chromium-copper-arsenate-treated wood,JAMA 251, 2393–2396 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. C. Ndiokwere, A survey of arsenic levels in human hair and nails—exposure of wood treatment factory employees in Nigeria,Environ. Pollut. 9, 95–105 (1985).

    CAS  Google Scholar 

  9. G. Henke, A. Nucci, and L. S. Queiroz, Detection of repeated arsenical poisoning by neutron activation analysis of foot nail segments,Arch. Toxicol. 50, 125–131 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. M. R. Karagas, J. S. Morris, J. E. Weiss, V. Spate, C. Baskett, and E. R. Greenberg, Toenail samples as an indicator of drinking water arsenic exposure,Cancer Epidemiol. Biomarkers Prev. 5, 849–852 (1996).

    PubMed  CAS  Google Scholar 

  11. B. Agahian, J. S. Lee, J. H. Nelson, and R. E. Johns, Arsenic levels in fingernails as a biological indicator of exposure to arsenic,Am. Ind. Hyg. Assoc. J. 51, 646–651 (1990).

    PubMed  CAS  Google Scholar 

  12. D. Das, A. Chatterjee, B. K. Mandai, G. Samanta, D. Chakraborti, and B. Chanda, Arsenic in ground water in six districts of West bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people,Analyst 120, 917–924 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. A. Olguin, P. Jauge, M. Cebrian, and A. Albores, Arsenic levels in blood, urine, hair and nails from a chronically exposed human population,Proc. West Pharmacol. Soc. 26, 175–177 (1983).

    PubMed  CAS  Google Scholar 

  14. Y. Takagi, S. Matsuda, S. Imai, Y. Ohmori, T. Masuda, J. A. Vinson, et al., Survey of trace elements in human nails: an international comparison,Bull. Environ. Contam. Toxicol. 41, 690–695 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. J. Harrington, J. Middaugh, D. Morse, and H. J., A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks, Alaska,Am. J. Epidemiol. 108, 377–384 (1978).

    PubMed  CAS  Google Scholar 

  16. S. Biswas, M. Abdullah, S. Akhter, S. Tarafdar, M. Khaliquzzaman, and A. Khan, Trace elements in human fingernails: measurement by proton-induced X-ray emission,J. Radioanal. Nucl. Chem. 82, 111–124 (1984).

    Article  CAS  Google Scholar 

  17. D. Dhawan, A. P. S. Narang, and D. V. Datta, Levels of arsenic in liver cirrhosis,Toxicol. Lett. 15, 2–3 (1983).

    Article  Google Scholar 

  18. M. Garland, J. S. Morris, B. A. Rosner, M. J. Stampfer, V. L. Spate, C. J. Baskett, et al., Toenail trace element levels as biomarkers: reproducibility over a 6-year period,Cancer Epidemiol. Biomarkers Prev. 2, 493–497 (1993); erratum:Cancer. Epidemiol. Biomarkers Prev. 3(6), 523 (1994).

    PubMed  CAS  Google Scholar 

  19. C. A. Pounds, E. R Pearson, and T. D. Turner, Arsenic in fingernails,J. Forensic Sci. Soc. 19, 165–173 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. D. E. Vance, W. D Ehmann, and W. R. Markesbery, Trace element content in fingernails and hair of a nonindustrialized US control population,Biol. Trace Element Res. 17, 109–121 (1988).

    CAS  Google Scholar 

  21. S. Durrant, Alternatives to all-argon plasmas in inductively coupled plasma mass spectrometer (ICP-MS): an overview,Fresenius J. Anal. Chem. 1, 1–4 (1993).

    Google Scholar 

  22. H. Vanhoe, A review of the capabilities of ICP-MS for trace element analysis in body fluids and tissues. [Review],J. Trace Elem. Electrolytes Health Dis. 7, 131–139 (1993).

    PubMed  CAS  Google Scholar 

  23. C. J. Amarasiriwardena, N. Lupoli, V. Potula, S. Korrick, and H. Hu, The determination of total arsenic concentration in human urine by inductively coupled plasma mass spectrometer (ICP-MS),Analyst,123(3), 441–445 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. W. W. Harrison and A. B. Tyree, The determination of trace elements in human fingernails by atomic absorption spectroscopy,Clin. Chim. Acta 31, 63–73 (1971).

    Article  PubMed  CAS  Google Scholar 

  25. M. Pagano and K. Gauvreau,Principles of Biostatistics, Wadsworth, Belmont, CA (1993).

    Google Scholar 

  26. M. Campbell, C. Demesmay, and M. Olle, Determination of total arsenic concentrations in biological matrices by inductively coupled plasma mass spectrometer,J. Anal. Atom. Spectrom. 9, 1379–1384 (1994).

    Article  CAS  Google Scholar 

  27. L. C. Bate and F. F. Dyer, Trace elements in human hair,Nucleonics 23, 72–76 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KL.B., Amarasiriwardena, C.J. & Christiani, D.C. Determination of total arsenic concentrations in nails by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 67, 109–125 (1999). https://doi.org/10.1007/BF02784067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784067

Index entries

Navigation