Skip to main content
Log in

Morphine-induced increase in D-1 receptor regulated signal transduction in rat striatal neurons and its facilitation by glucocorticoid receptor activation: Possible role in behavioral sensitization

  • Reward/Drug Abuse Mechanisms
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piazza, P. V., Deminiere, J. M., Le Moal, M., and Simon, H. 1990. Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res. 514:22–26.

    Article  PubMed  CAS  Google Scholar 

  2. Kalivas, P. W., and Stewart, J. 1991. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16:223–244.

    Article  PubMed  CAS  Google Scholar 

  3. Robinson, T. E., and Berridge, K. C. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18:247–291.

    Article  PubMed  CAS  Google Scholar 

  4. Valadez, A. and Schenk, S. 1994. Persistence of the ability of amphetamine preexposure to facilitate acquisition of cocaine self-administration. Pharmacol. Biochem. Behav. 47:203–205.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, J. L., Nickolenko, J., and Sharp, F. R. 1994. Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 91:8537–8541.

    Article  PubMed  CAS  Google Scholar 

  6. Simpson, J. N., Wang, J. Q., and McGinty, J. F. 1995. Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience 69: 441–457.

    Article  PubMed  CAS  Google Scholar 

  7. Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, Y. N., Duman, R. S., and Nestler, E. J. 1994. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13: 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  8. Konradi, C., Cole, R. L., Heckers, S., and Hyman, S. E. 1994. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14:5623–5634.

    PubMed  CAS  Google Scholar 

  9. Cole, R. L., Konradi, C., Douglass, J., and Hyman, S. E. 1995. Neuronal adaptation to amphetamine and dopamine: Molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823.

    Article  PubMed  CAS  Google Scholar 

  10. Henry, D. J., and White, F. J. 1991. Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J. Pharmacol. Exp. Ther. 258:882–890.

    PubMed  CAS  Google Scholar 

  11. Wolf, M. E., White, F. J., and Hu, X-T. 1994. MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 14: 1735–1745.

    PubMed  CAS  Google Scholar 

  12. Tjon, G. H. K., De Vries, T. J., Ronken, E., Hogenboom, F., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1994. Repeated and chronic morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its δ- and κ-opioid receptor regulation. Eur. J. Pharmacol. 252:205–212.

    Article  PubMed  CAS  Google Scholar 

  13. Pfeiffer, A., and Herz, A. 1984. Endocrine actions of opioids. Horm. Metab. Res. 16:386–397.

    Article  PubMed  CAS  Google Scholar 

  14. Rivier, C., and Vale, W. 1987. Cocaine stimulates adrenocorticotropin (ACTH) secretion through a corticotropin-releasing factor (CRF)-mediated mechanism. Brain Res. 422:403–406.

    Article  PubMed  CAS  Google Scholar 

  15. Roberts, A. J., Lessov, C. N., and Phillips, T. J. 1995. Critical role for glucocorticoid receptors in stress- and ethanol-induced locomotor sensitization. J. Pharmacol. Exp. Ther. 275:790–797.

    PubMed  CAS  Google Scholar 

  16. Swerdlow, N. R., Koob, G. F., Cador, M., Lorang, M., and Hauger, R. L. 1993. Pituitary-adrenal axis responses to acute amphetamine in the rat. Pharmacol. Biochem. Behav. 45:629–637.

    Article  PubMed  CAS  Google Scholar 

  17. Evans, R. M., and Arriza, J. L. 1989. A molecular framework for the action of glucocorticoid hormones in the central nervous system. Neuron 2:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  18. Cador, M., Dulluc, J. and Mormede, P. 1993. Modulation of the locomotor response to amphetamine by corticosterone. Neuroscience 56:981–988.

    Article  PubMed  CAS  Google Scholar 

  19. Deroche, V., Piazza, P. V., Casolini, P., Le Moal, M., and Simon, H. 1993. Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depend on corticosterone secretion. Brain Res. 611:352–356.

    Article  PubMed  CAS  Google Scholar 

  20. Deroche, V., Marinelli, M., Maccari, S., Le Moal, M., Simon, H., and Piazza, P. V. 1995. Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J. Neurosci. 15:7181–7188.

    PubMed  CAS  Google Scholar 

  21. Piazza, P. V., Marinelli, M., Jodogne, C., Deroche, V., Rouge-Pont, F., Maccari, S., Le Moal, M., and Simon, H. 1994. Inhibition of corticosterone synthesis by metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration. Brain Res. 658:259–264.

    Article  PubMed  CAS  Google Scholar 

  22. Rouge-Pont, F., Marinelli, M., Le Moal, M., Simon, H., And Piazza, P. V. 1995. Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine by cocaine depends on stress-induced corticosterone secretion. J. Neurosci. 15:7189–7195.

    PubMed  CAS  Google Scholar 

  23. Schoffelmeer, A. N. M., De Vries, T. J., Vanderschuren, L. J. M. J., Tjon, G. H. K., Nestby, P., Wardeh, G., and Mulder, A. H. 1995. Glucocorticoid receptor activation potentiates the morphine-induced adaptive increase in dopamine D-1 receptor efficacy in γ-aminobutyric acid neurons of rat striatum/nucleus accumbens. J. Pharmacol. Exp. Ther. 274:1154–1160.

    PubMed  CAS  Google Scholar 

  24. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates. 2nd ed. Sydney, Academic Press.

    Google Scholar 

  25. Voorn, P., and Docter, G. J. 1992. A rostrocaudal gradient in the synthesis of enkephalin in nucleus accumbens. Neuroreport 3: 161–164.

    Article  PubMed  CAS  Google Scholar 

  26. Angulo, J. A., and McEwen, B. 1994. Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res. Rev. 19:1–28.

    Article  PubMed  Google Scholar 

  27. Klitenick, M. A., DeWitte, P., and Kalivas, P. W. 1992. Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J. Neurosci. 12:2623–2632.

    PubMed  CAS  Google Scholar 

  28. Ronken, E., Mulder, A. H., and Schoffelmeer, A. N. M. 1993. Interacting presynaptic kappa-opioid and GABAa receptors modulate dopamine release from striatal synaptosomes. J. Neurochem. 61:1634–1639.

    Article  PubMed  CAS  Google Scholar 

  29. Pickel, V. M., Chan, J., and Sesack, S. R. 1993. Cellular substrates for interactions between dynorphin terminals and dopamine dendrites in rat ventral tegmental area and substantia nigra. Brain Res. 602:275–289.

    Article  PubMed  CAS  Google Scholar 

  30. Schoffelmeer, A. N. M., De Vries, T. J., Hogenboom, F., and Mulder, A. H. 1993. Mu- and delta-opioid receptors inhibitorily linked to dopamine-sensitive adenylate cyclase in rat striatum display a selectivity profile towards endogenous opioid peptides different from that of presynaptic mu, delta and kappa receptors. J. Pharmacol. Exp. Ther. 267:205–210.

    PubMed  CAS  Google Scholar 

  31. Spanagel, R., Herz, A., and Shippenberg, T. S. 1990. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J. Neurochem. 55:1734–1740.

    Article  PubMed  CAS  Google Scholar 

  32. Van Vliet, B. J., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1991. Reciprocal effects of chronic morphine administration on stimulatory and inhibitory G-protein α subunits in primary cultures of rat striatal neurons. Eur. J. Pharmacol. Mol. Pharmacol. 208:341–342.

    Article  Google Scholar 

  33. Van Vliet, B. J., Van Rijswijk, A. L. C. T., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1993. Adaptive changes in the number of Gs- and Gi-proteins underlie adenylyl cyclase sensitization in morphine-treated rat striatal neurons. Eur. J. Pharmacol. Mol. Pharmacol. 245:23–29.

    Article  Google Scholar 

  34. Kalivas, P. W., and Duffy, P. 1993. Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13:266–275.

    PubMed  CAS  Google Scholar 

  35. Kalivas, P. W., and Duffy, P. 1993. Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J. Neurosci. 13:276–284.

    PubMed  CAS  Google Scholar 

  36. McDougall, S. A., Duke, M. A., Bolanos, C. A., and Crawford, C. A. 1994. Ontogeny of behavioral sensitization in the rat: effects of direct and indirect dopamine agonists. Psychopharmacology 116:483–490.

    Article  PubMed  CAS  Google Scholar 

  37. Ronken, E., Mulder, A. H., and Schoffelmeer, A. N. M. 1994. Chronic activation of mu- and kappa-opioid receptors in cultured catecholaminergic neurons from rat brain causes neuronal supersensitivity without receptor desensitization. J. Pharmacol. Exp. Ther. 268:595–599.

    PubMed  CAS  Google Scholar 

  38. Saito, N., Guitart, X., Hayward, M., Tallman, J. F., Duman, R. S., and Nestler, E. J. 1989. Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc. Natl. Acad. Sci., USA 86:3906–3910.

    Article  PubMed  CAS  Google Scholar 

  39. De Vries, T. J., Schoffelmeer, A. N. M., Tjon, G. H. K., Nestby, P., Mulder, A. H., and Vanderschuren, L. J. M. J. 1996. Mifepristone prevents the expression of long-term behavioural sensitization to amphetamine. Eur. J. Pharmacol., 307:R3-R4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoffelmeer, A.N.M., Voorn, P., Jonker, A.J. et al. Morphine-induced increase in D-1 receptor regulated signal transduction in rat striatal neurons and its facilitation by glucocorticoid receptor activation: Possible role in behavioral sensitization. Neurochem Res 21, 1417–1423 (1996). https://doi.org/10.1007/BF02532383

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532383

Key Words

Navigation