Skip to main content
Log in

Modulatory effects of Gs-coupled excitatory opioid receptor functions on opioid analgesia, tolerance, and dependence

  • Simulatory EfFects of Opioids
  • Minireview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Electrophysiologic studies of opioid effects on nociceptive types of dorsal root ganglion (DRG) neurons in organotypic cultures have shown that morphine and mostμ, δ, and κ opioid agonists can elicit bimodal excitatory as well as inhibitory modulation of the action potential duration (APD) of these cells. Excitatory opioid effects have been shown to be mediated by opioid receptors that are coupled via Gs to cyclic AMP-dependent ionic conductances that prolong the APD, whereas inhibitory opioid effects are mediated by opioid receptors coupled via Gi/Go to ionic conductuances that shorten the APD. Selective blockade of excitatory opioid receptor functions by low (ca. pM) concentrations of naloxone, naltrexone, etorphine and other specific agents markedly increases the inhibitory potency of morphine or other bimodally acting agonists and attenuates development of tolerance/dependence. These in vitro studies have been confirmed by tail-flick assays showin that acute co-treatment of mice with morphine plus ultra-low-dose naltrexone or etorphine remarkably enhances the antinociceptive potency of morphine whereas chronic co-treatment attenuates development of tolerance and naloxone-precipitated withdrawal-jumping symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crai, S.M. 1966. Development of “organotypic” bioelectric activities in central nervous tissues during maturation in culture. Int. Rev. Neurobiol. 9:1–43.

    Article  Google Scholar 

  2. Crain, S. M. 1976. Neurophysiologic Studies in Tissue Culture. Raven Press, New York.

    Google Scholar 

  3. Crain, S. M. 1983. Role of CNS target cues in formation of specific afferent synaptic connections in organotypic cultures. Pages 1–32,in Pfeiffer, S. E. (ed.), Neuroscience Approached through Cell Culture, Vol II, CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Crain, S. M., Peterson, E. R., Crain, B., and Simon, E. J. 1977. Selective opiate depression of sensory-evoked synaptic networks in dorsal-horn region of spinal cord cultures. Brain Res. 133:162–166.

    Article  PubMed  CAS  Google Scholar 

  5. Crain, S. M., Crain, B., Peterson, E. R., and Simon, E. J. 1978. Selective depression by opioid peptides of sensory-evoked dorsalhorn network reponses in organized spinal cord cultures. Brain Res. 157:196–201.

    Article  PubMed  CAS  Google Scholar 

  6. Crain, S. M., Crain, B., Finnigan, T., and Simon, E. J. 1979. Development of tolerance to opiates and opioid peptides in organotypic cultures of mouse spinal cord. Life Sci. 25:1797–1802.

    Article  PubMed  CAS  Google Scholar 

  7. Hiller, J. M., Simon, E. J., Crain, S. M., and Peterson, E. R. 1978. Opiate receptors in cultures of fetal mouse dorsal root ganglion (DRG) and spinal cord: Predominance in DRG nerites. Brain Res. 145:396–400.

    Article  PubMed  CAS  Google Scholar 

  8. Crain, S. M. 1984. Tissue culture models for analyses of opioid analgesia, tolerance and plasticity. Pages 260–292,In Sharp, C. (ed.) NIDA Research Monograph: Mechanisms of Tolerance and Dependence (ADM 84-1330) U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  9. Crain, S. M., and Peterson, E. R. 1974. Enhanced afferent synaptic function in fetal mouse spinal cord-sensory ganglion explants following NGF-induced ganglion hypertrophy. Brain Res. 79:145–152.

    Article  PubMed  CAS  Google Scholar 

  10. Crain, S. M., and Peterson, E. R. 1982. Selective innervation of target regions within fetal mouse spinal cord and medulla explants by isolated dorsal root ganglion in organotypic co-cultures Devel. Brain Res. 2:341–362.

    Article  Google Scholar 

  11. Shen, K.-F., and Crain, S. M. 1994. Nerve growth factor rapidly prolongs the action potential of mature sensory neurons in culture and this effect requires activation of Gs-coupled excitatory kappa opioid receptors on these cells. J. Neurosci. 14:5570–5579.

    PubMed  CAS  Google Scholar 

  12. Crain, S. M., and Shen, K.-F. 1990. Opioids can evoke direct receptor- mediated excitatory effects on sensory neurons. Trends Pharmacol. Sci. 11:77–81.

    Article  PubMed  CAS  Google Scholar 

  13. Shen, K.-F., and Crain, S. M. 1989. Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 491:227–242.

    Article  PubMed  CAS  Google Scholar 

  14. Chalazonitis, A., and Crain, S. M. 1986. Maturation of opioid sensitivity of fetal mouse dorsal-root ganglion neuron perikarya in organotypic cultures:regulation by spinal cord. Neurosci. 17: 1181–1198.

    Article  CAS  Google Scholar 

  15. Mudge, A. W., Leeman, S. E., and Fischbach, G. D. 1979. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. USA. 76:526–530.

    Article  PubMed  CAS  Google Scholar 

  16. North, R. A. 1986. Opioid receptor types and membrane ion channels. Trends Neurosci. 9:114–117.

    Article  CAS  Google Scholar 

  17. Werz, M. A., and Macdonald, R. L. 1983. Opoid peptides with differential affinity for mu- and delta-receptors decrease sensory neuron calcium-dependent action potentials. J. Pharmacol. Exp. Ther. 227:394–402.

    PubMed  CAS  Google Scholar 

  18. Werz, M. A., and Macdonald, R. L. 1985. Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium dependent action potential duration. J. Pharmacol. Exp. Ther. 234: 49–56.

    PubMed  CAS  Google Scholar 

  19. Chen, G.-G., Chalazonitis, A., Shen, K.-F., and Crain, S. M. 1988. Inhibitor of cyclic AMP-dependent protein kinase blocks opioid-induced prolongation of the action potential of mouse sensory ganglion neuron in dissociated cell culture. Brain Res. 462:372–377.

    Article  PubMed  CAS  Google Scholar 

  20. Crain, S. M., Shen, K.-F., and Chalazonitis, A. 1988. Opioids excite rather than inhibit sensory neurons after chronic opioid exposure of spinal cord-ganglion cultures. Brain Res. 455:99–109.

    Article  PubMed  CAS  Google Scholar 

  21. Cruciani, R. A., Dvorkin, B., Morris, S. A., Crain, S. M., and Makman, M. H. 1993. Direct coupling of opioid receptors to both Gs and Gi proteins in F-11 neuroblastoma X sensory neuron hybrid cells. Proc. Natl. Acad. Sci. USA. 90:3019–3023.

    Article  PubMed  CAS  Google Scholar 

  22. Fan, S. F., Shen, K.-F., and Crain, S. M. 1991. Opioids at low concentration decrease openings of K+ chennels in sensory ganglion neurons. Brain Res. 558:166–170.

    Article  PubMed  CAS  Google Scholar 

  23. Shen, K.-F., and Crain, S. M. 1990. Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by Gs-linked opioid receptors. Brain Res. 525:225–231.

    Article  PubMed  CAS  Google Scholar 

  24. Gross, R. A., Moises, H. C., Uhler, M. D., and Macdonald, R. L. 1990. Dynorphin A and CAMP-dependent protein kinase independently regulate neuronal calcium currents. Proc. Natl. Acad. Sci. USA 87:7025–7029.

    Article  PubMed  CAS  Google Scholar 

  25. Crain, S. M., Crain, B., and Makman, M. H. 1987. Pertussis toxin blocks depressant effects of opioid monoaminergic and muscarinic agonists on dorsal-horn network responses in spinal cord-ganglion cultures. Brain Res. 400:185–190.

    Article  PubMed  CAS  Google Scholar 

  26. Miyake, M. J., Christie, M. J., and North, R. A. 1989. Single potassium channels opened by opioids in rat locus ceruleus neurons. Proc. Natl. Acad. Sci. USA. 86:3419–3422.

    Article  PubMed  CAS  Google Scholar 

  27. Fujimoto, J. M., Arts K. S., Rady, J. J. and Tseng, L. F 1990. Spinal dynorphin A(1–17): possible mediation of antianalgesic action Neuropharmacol. 29:609–617.

    Article  CAS  Google Scholar 

  28. Crain, S. M., and Shen, K.-F. 1992. After chronic opioid exposure sensory neurons become supersensitive to the excitatory effects of opioid agonists and antagonists as occurs after acute elevation of GM1 ganglioside. Brain Res. 575:13–24.

    Article  PubMed  CAS  Google Scholar 

  29. Suarez-Roca, H., and Maixner, W. 1993. Activation of kappa opioid receptors by U50488H and morphine enhances the release of substance P from rat trigeminal nucleus slices. J. Pharmacol. Exp. Therap. 264:648–653.

    CAS  Google Scholar 

  30. Crain, S. M., and Shen, K.-F. 1992. After GM1 ganglioside treatment of sensory neurons naloxone paradoxically prolongs the action potential but still antagonizes opioid inhibition. J. Pharmacol. Exp. Ther. 260:182–186.

    PubMed  CAS  Google Scholar 

  31. Shen, K.-F., and Crain, S. M. 1992. Chronic selective activation of excitatory opioid receptor functions in sensory neurons results in opioid dependence without tolerance. Brain Res 597:74–83.

    Article  PubMed  CAS  Google Scholar 

  32. Nestler, E. J. 1992 Molecular mechanisms of drug addiction J. Neurosci. 12:2439–2450.

    PubMed  CAS  Google Scholar 

  33. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino K. A., Crain, S. M., and Nestler, E. J. 1991. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548:100–110.

    Article  PubMed  CAS  Google Scholar 

  34. Crain, S. M., and Shen, K.-F. 1995. Etorphine elicits unique inhibitory-agonist and excitatory-antagonist actions at opioid receptors on sensory neurons: New rationale for improved clinical analgesia and treatment of opiate addiction. Pages 234–268.in Repaka, R. S. & Sorer, H. (eds.), Discovery of Novel Opioid Medications, NIDA Monograph, U.S. Govt. Print. Office, Washington, D.C.

    Google Scholar 

  35. Bentley, K. W., and Hardy, D. G. 1963. New potent analgesics in the morphine series. Proc. Chem. Soc. p. 220.

  36. Blane, G. F., Boura, A. L. A., Fitzgeald, A. E. and Lister, R. E. 1967. Actions of etorphine hydrochloride (M99): A potent morphine-like agent. Brit. J. Pharmacol. Chemother. 30:11–22.

    Article  CAS  Google Scholar 

  37. Bentley, K. W., and Hardy, D. G. 1967. Novel analgesics and molecular rearrangements in the morphine-thebaine group. III. Alcohols of the 6,14-endo-Ethenotetrahydrooripavine series and derived analogs of n-allylnormorphine and-norcodeine. J. Amer. Chem. Soc. 89:3281–3292.

    Article  CAS  Google Scholar 

  38. Shen, K.-F., and Crain, S. M. 1994. Antagonists at excitatory opioid receptors on sensory neurons in culture increase potency and specificity of opiate analgesics and attenuate development of tolerance/dependence. Brain Res. 636:286–297.

    Article  PubMed  CAS  Google Scholar 

  39. Lange, D. G., Fujimoto, J. M., Fuhrman-Lane, C. L., and Wang, R. I. H. 1980. Unidirectional non-cross tolerance to etorphine in morphine-tolerant mice and role of the blood-brain barrier. Toxicol. Applied Pharmacol. 54:177–186.

    Article  CAS  Google Scholar 

  40. Xu, J. Y., Fujimoto, J. M., and Tseng, L. F. 1992. Involvement of supraspinal epsilon and mu opioid receptors in inhibition of the tail-flick response induced by etorphine in the mouse. J. Pharmacol. Exp. Therap. 263:246–252.

    CAS  Google Scholar 

  41. Qin, B.-Y. 1993. Research advances of dihydroetorphine: from analgesia to detoxification. New Drugs and Clin. Remedies 12: 119–123.

    Google Scholar 

  42. Qin, B.-Y. 1994. The application of dihydroetorphine to detoxification of heroin addicts. Regulatory Peptides (Suppl. 1) 50:S81-S82.

    Google Scholar 

  43. Wang S. F., Yan, D. K., Yang, Z., and Qin, B. Y. 1992. Clinical investigation on detoxification of heroin addiction with dihydroetorphine hydrochloride. Chin J. Clin. Pharmacol. 8:106–112.

    Google Scholar 

  44. Horan, P. J., Mattia, A., Bilsky, E. J., Weber, S., Davis, T. P., Yamamura, H. I., Malatynska E., Appleyard, S. M., Slaninova, J., Misicka, A., Lipkowski, A. W., Hruby, V. J., and Porreca, F. 1993. Antinociceptive profile of biphalin, a dimeric enkephalin analog. J. Pharmacol. Exp. Therap. 26:1446–1454.

    Google Scholar 

  45. Shen, K.-F., and Crain, S. M. 1995. Biphalin, an enkephalin analog with unexpectedly high antinociceptive potency and low dependence liability in vivo, selectively antagonizes excitatory opioid receptor functions of sensory neurons in culture. Brain Res. 701:158–166.

    Article  PubMed  CAS  Google Scholar 

  46. Crain, S. M., and Shen, K.-F. 1995. Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proc. Natl. Acad. Sci. USA. 92:10540–10544.

    Article  PubMed  CAS  Google Scholar 

  47. Shen, K.-F., and Crain, S. M. 1995. Specific N- or C-terminus modified dynorphin and β-endorphin peptides can selectively block excitatory opioid receptor functions in sensory neurons and unmask potent inhibitory effects of opioid agonists, Brain Res. 673:30–38.

    Article  PubMed  CAS  Google Scholar 

  48. Crain, S. M., and Shen, K.-F. 1995. Chronic morphine-treated sensory ganglion neurons remain supersensitive to the excitatory effects of naloxone for months after return to normal culture medium: an in vitro model of “protracted opioid dependence”. Brain Res. 694:103–110.

    Article  PubMed  CAS  Google Scholar 

  49. Crain, S. M., and Shen, K.-F. 1995. Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other opioid agonists. U.S. Patent #5,472,943, US Patent Office, Washington, DC

    Google Scholar 

  50. Uhl, G. R., Childers, S., and Pasternak, G. 1994. An opiate-receptor gene family reunion. Trends Neurophysiol. 17:89–93.

    CAS  Google Scholar 

  51. Fan, S.-F. and Crain, S. M. 1995. Dual regulation by μ, δ and κ opioid receptor agonists of K+ conductance of DRG neurons and neuroblastoma X DRG neuron hybrid F11 cells. Brain Res. 696: 97–105.

    Article  PubMed  CAS  Google Scholar 

  52. Eason, M. G., Kurose, H., Holt, B. D., Raymond, J. R., and Liggett, S. B. 1992. Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. J. Biol. Chem. 267:15759–15801.

    Google Scholar 

  53. Okamoto, T., Murayama, Y., Hayashi, Y., Inagaki, M., Ogata, E. and Nishimoto, I. 1991. Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 67:723–730.

    Article  PubMed  CAS  Google Scholar 

  54. Birnbaum, A. K., Wotta, D. R., Law, P. Y., and Wilcox, G. L. 1995. Functional expression of adrenergic and opioid receptors in Xenopus oocytes: interaction between α2-adrenergic and β2-adrenergic receptors. Mol. Brain Res. 28:72–80.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, G., Lu, Z., and Ledeen, R. W. 1995. GM1 conversion of a cloned δ opioid receptor from inhibitor to stimulator of adenyl cyclase. J. Neurochem. 64:S104.

    Google Scholar 

  56. Shen, K.-F., and Crain, S. M. 1992. Cholera-toxin-B subunit blocks excitatory effects of opioids on sensory neuron action potentials indicating that GM1 ganglioside may regulate Gs-linked opioid receptor functions. Brain Res. 531:1–7.

    Article  Google Scholar 

  57. Shen, K.-F., Crain, S. M., and Ledeen, R. W. 1991. Brief treatment of sensory ganglion neurons with GM1 ganglioside enhances the efficacy of opioid excitatory effects on the action potential. Brain Res. 559:130–138.

    Article  PubMed  CAS  Google Scholar 

  58. Wu, G., Fan, S. F., Lu, Z.-H., Ledeen, R. W., and Crain, S. M. 1995. Chronic opioid treatment of neuroblastoma × dorsal root ganglion neuron hybrid F11 cells results in elevated GM1 ganglioside and cyclic adenosine monophosphate levels and onset of naloxone-evoked decreases in membrane K+ currents. J. Neurosci. Res. 42:493–503.

    Article  PubMed  CAS  Google Scholar 

  59. Crain, S. M. and Shen, K. F. 1996. Etorphine elicits anomalous excitatory opioid effects on sensory neurons treated with GM1 ganglioside or pertussis toxin in contrast to its potent inhibitory effects on naive or chronic morphine-treated cells. Brain Res. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crain, S.M., Shen, KF. Modulatory effects of Gs-coupled excitatory opioid receptor functions on opioid analgesia, tolerance, and dependence. Neurochem Res 21, 1347–1351 (1996). https://doi.org/10.1007/BF02532375

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532375

Key words

Navigation