Skip to main content
Log in

Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in theparD stability system of plasmid R1

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

TheparD stability system of plasmid R1 is an auto-regulated operon containing two genes,kis andkid, that code, respectively, for a killer protein (Kid) and for an antagonist of Kid action (Kis protein). A polycistronic transcript and a shorter mRNA, coding only for Kis and ending in a stem-loop sequence, have been identified as the mainparD transcripts in cells carrying a derepressedparD operon. In this communication we show that bothparD mRNAs have a half-life close to 1 min and are present in similar amounts. Using an assay based on cell-free extracts ofEscherichia coli, we demonstrate that the shortkis mRNA originates from limited degradation of the bicistronicparD transcript and that the stem-loop structure within the 5′ end of thekid gene is specifically required for the formation of this short transcript. In vivo experiments show that synthesis of Kis is required for efficient synthesis of Kid. These data indicate that RNA processing and translational coupling are important mechanisms that modulate the differential expression of the two genes,kis andkid, in the bicistronicparD operon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhin MR, van Duin J (1990) Scanning model for translationl reinitiation in Eubacteria. J Mol Biol 213:811–818

    CAS  PubMed  Google Scholar 

  • Altuvia S, Locker-Giladi H, Koby S, Oppenheim A (1987) RNase III stimulates the translation of thecIII gene of bacteriophage λ. Proc Natl Acad Sci USA 84:6511–6515

    CAS  PubMed  Google Scholar 

  • Baga M, Göransson M, Normark S, Uhlin BE (1988) Processed mRNA with differential stability in the regulation ofE. coli pilin gene expression. Cell 52:197–206

    Article  CAS  PubMed  Google Scholar 

  • Belasco JG, Higgins CF (1988) Mechanisms of mRNA decay in bacteria: a perspective. Gene 72:15–23

    Article  CAS  PubMed  Google Scholar 

  • Belasco JG, Adams CW, von Gabain A, Cohen SN (1985) Differential expression of photosynthetic genes inR. capsulata results from segmental differences in stability within the polycistronicrxcA transcript. Cell 40:171–178

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, de Torrontegui G, Díaz R (1987) Identification of components of a new stability system of plasmid R1,parD, that is close to the origin of replication of this plasmid. Mol Gen Genet 210:101–110

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Ortega S, de Torrontegui G, Gíaz R (1988) Kflling ofEscherichia coli cells modulated by components of the stability systemparD of plasmid R1. Mol Gen Genet 215:146–151

    Article  CAS  PubMed  Google Scholar 

  • Cannistraro VJ, Subbarao MN, Kennell D (1986) Specific endonucleolytic cleavage sites for decay ofEscherichia coli mRNA. J Mol Biol 192:257–274

    Article  CAS  PubMed  Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    CAS  PubMed  Google Scholar 

  • Chen CYA, Beatty JT, Cohen SN, Belasco JG (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient forpuf mRNA stability. Cell 52:609–619

    Article  CAS  PubMed  Google Scholar 

  • Díaz R, Nordström K, Staudenbauer WL (1981) Plasmid R1 DNA replication depends on protein synthesis in cell free extracts ofEscherichia coli. Nature 289:326–328

    Article  PubMed  Google Scholar 

  • Donachie WD, Begg KJ, Vicente M (1976) Cell length, cell growth and cell division. Nature 264:328–333

    Article  CAS  PubMed  Google Scholar 

  • Faubladier M, Kaymeuang C, Bouché JP (1990)Escherichia coli cell division inhibitor DicF-RNA of thedicB operon. Evidence for its generationin vivo by transcription termination and by RNase III and RNase E-dependent processing. J Mol Biol 212:461–471

    Article  CAS  PubMed  Google Scholar 

  • García de Viedma D, Giraldo R, Ruíz-Echevarría MJ, Lurz R, Díaz-Orejas R (1995) Translation ofrepA, the gene of the initiation protein of thePseudomonas plasmid pPS10 is autoregulated by interactions of the RepA protein at a symmetrical operator. J Mol Biol 247:211–223

    Article  PubMed  Google Scholar 

  • Gold L (1988) Post-transcriptional regulatory mechanisms inEscherichia coli. Ann Rev Biochem 57:199–233

    Article  CAS  PubMed  Google Scholar 

  • Goliger JA, Yang X, Guo HC, Roberts JW (1989) Early transcribed sequences affect efficiency ofEscherichia coli RNA polymerase. J Mol Biol 205:331–341

    Article  CAS  PubMed  Google Scholar 

  • Inouye M (1988) Antisense RNA: its functions and applications in gene regulation, a review. Gene 72:25–34

    Article  CAS  PubMed  Google Scholar 

  • Ivey-Hoyle M, Steege DA (1989) Translation of phage f1 gene VII occurs from an inherently defective initiation site made functional by coupling. J Mol Biol 208:233–244

    Article  CAS  PubMed  Google Scholar 

  • Jacobson AB, Good L, Simonetti J, Zucker M (1984) Some simple computational methods to improve the folding of large RNAs. Nucleic Acid Res 12:45–52

    CAS  PubMed  Google Scholar 

  • King TC, Sirdeskmukh R, Schlessinger D (1986) Nucleolytic processing of ribonucleic acid transcripts in prokaryotes. Microbiol Rev 50:428–451

    CAS  PubMed  Google Scholar 

  • Klug G, Cohen SN (1990) Combined action of multiple hairpin loop structures and sites of rate limiting endonucleolytic cleavage determines differential degradation rates of individual segments within polycistronicpuf operon mRNA. J Bacteriol 172:5140–5146

    CAS  PubMed  Google Scholar 

  • Klug G, Adams CW, Belasco J, Doerge B, Cohen SN (1987) Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of theR. capsulatus puf operon. EMBO J 6:3515–3520

    CAS  PubMed  Google Scholar 

  • Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    Article  CAS  PubMed  Google Scholar 

  • Little S, Hyde S, Campbell CJ, Lilley RJ, Robinson MK (1989) Translational coupling in thethreonine operon ofEscherichia coli K12. J Bacteriol 171:3518–3522

    CAS  PubMed  Google Scholar 

  • McCarthy JEG, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6:78–85

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JEG, Gerstel B, Surin B, Wiedemann U, Ziemke P (1991) Differential gene expression from theEscherichia coli atp operon mediated by segmental differences en mRNA stability. Mol Microbiol 5:2447–2458

    CAS  PubMed  Google Scholar 

  • Miller JH (1972) Assay for β-Galactosidase. Experiments in molecular genetics. Cold Spring Harbour Laboratory press. New York, pp 352–362

    Google Scholar 

  • Moine H, Romby P, Springer M, Grunberg-Manago M, Ebel JP, Ehresmann C, Ehresmann B (1988) Messenger RNA structure and gene regulation at the translational level inEscherichia coli: the case of threonine: tRNAThr ligase. Proc Natl Acad Sci USA 85:7892–7896

    CAS  PubMed  Google Scholar 

  • Molin S, Stougard P, Uhlin BE, Gustafsson P, Nordström K (1979) Clustering of genes involved in replication, incompatibility and stable maintenance of the resistance plasmid R1. J Bacteriol 138:70–79

    CAS  PubMed  Google Scholar 

  • Mott JE, Galloway JL, Platt T (1985) Maturation ofEscherichia coli tryptophan operon mRNA: evidence for 3′ exonucleolytic processing after rho-dependent termination. EMBO J 4:1887–1891

    CAS  PubMed  Google Scholar 

  • Newbury SF, Smith NH, Higgins CF (1987a) Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF (1987b) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310

    Article  CAS  PubMed  Google Scholar 

  • Nieto C, Giraldo R, Fernandez-Tresguerres E, Díaz R (1992) Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific forPseudomonas isolated fromPseudomonas syringae pathovarsavastanoi. J Mol Biol 223:415–426

    Article  CAS  PubMed  Google Scholar 

  • Owolabi JB, Rosen BP (1990) Differential mRNA stability controls relative gene expression within the plasmid encoded arsenical resistance operon. J Bacteriol 172:2367–2371

    CAS  PubMed  Google Scholar 

  • Petersen C (1989) Long-range translational coupling in therplJL-rpoBC operon ofEscherichia coli. J Mol Biol 206:323–332

    Article  CAS  PubMed  Google Scholar 

  • Regnier P, Hajnsdorf E (1991) Decay of mRNA encoding ribosomal protein S15 ofEscherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilizing stem and loop structure. J Mol Biol 217:283–292

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Echevarría MJ, Berzal-Herranz A, Gerdes K, Díaz-Orejas R (1991) Thekis andkid genes of plasmid R1 form an operon that is autoregulated at the level of transcription by the coordinated action of the Kis and Kid proteins. Mol Microbiol 5:2685–2693

    PubMed  Google Scholar 

  • Ruiz-Echevarría MJ, Giménez-Gallego G, Sabariegos-Jareño R, Díaz-Orejas R (1995) Kid, a small protein of theparD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis. J Mol Biol 247:568–577

    Article  PubMed  Google Scholar 

  • Salser W (1977) Globin mRNA sequences: analysis of base-pairing and evolutionary implications. Cold Spring Harbour Symp Quant Biol 42:985–1002

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. (2nd edn) Cold Spring Harbour Laboratory, New York

    Google Scholar 

  • Schmidt BF, Berkhout B, Overbeek GP, Van Strien A, Van Duin J (1987) Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2. J Mol Biol 195:505–516

    Article  CAS  PubMed  Google Scholar 

  • Shapira SK, Chou J, Richaud FV, Casadaban MJ (1983) New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused tolacZ gene sequences encoding an enzymatically active carboxy-terminal portion of β-galactosidase. Gene 25:71–82

    Article  CAS  PubMed  Google Scholar 

  • Simons RW (1988) Naturally occurring antisense RNA control. A brief review. Gene 72:35–43

    Article  CAS  PubMed  Google Scholar 

  • Simons RW, Hiuman F, Kleckner N (1987) Improved single and multicopylac-based cloning vectors for protein and operon fusions. Gene 53:85–96

    Article  CAS  PubMed  Google Scholar 

  • Simons RW, Kleckner N (1988) Biological regulation of antisense RNA in prokaryotes. Annu Rev Genet 22:567–600

    Article  CAS  PubMed  Google Scholar 

  • Spanjaard RA, Van Dijk MCM, Turion AJ, Van Duin J (1989) Expression of the rat interferon-a1 gene inEscherichia coli controlled by secondary structure of the translational initiation region. Gene 80:345–351

    Article  CAS  PubMed  Google Scholar 

  • Staudenbauer WL (1976) Replication of small plasmids in extracts ofEscherichia coli. Mol Gen Genet 145:172–180

    Article  Google Scholar 

  • Tang CK, Draper DE (1989) Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 57:531–536

    Article  CAS  PubMed  Google Scholar 

  • Telenitsky AP, Chamberlin MJ (1989) Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J Mol Biol 205:315–330

    Article  Google Scholar 

  • Wulczyn FG, Khamann R (1991) Translational stimulation: RNA sequence and structure requirements for binding of Com protein. Cell 65:259–269

    Article  CAS  PubMed  Google Scholar 

  • Zucker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Echevarría, M.J., de la Cueva, G. & Díaz-Orejas, R. Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in theparD stability system of plasmid R1. Molec. Gen. Genet. 248, 599–609 (1995). https://doi.org/10.1007/BF02423456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02423456

Key words

Navigation