Skip to main content
Log in

Molecular genetic analysis of the role of GABAergic systems in the behavioral and cellular actions of alcohol

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Recent studies implicate the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in many neurochemical actions of ethanol and a variety of behavioral responses to acute and chronic ethanol treatment. However, the molecular mechanisms responsible for genetic differences in initial neurochemical or behavioral sensitivity to ethanol, and adaptation following chronic or repeated ethanol administration, remain to be elucidated. Pharmacogenetic research will increasingly move toward mapping, cloning, identification, and functional analysis of the genes underlying the actions of ethanol. The approaches discussed here permit molecular analysis of both known and previously unknown genes regulating behavioral sensitivity to ethanol. The synthesis of molecular methods and behavioral genetics offers immediate hope for delineating the role of the GABAA receptor complex, and other determinants of GABAergic neurotransmission, in determining genetic variation in behavioral responses to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan, A. M., and Harris, R. A. (1986). γ-Aminobutyric acid and alcohol actions: Neurochemical studies of long sleep and short sleep mice.Life Sci. 39:2005–2015.

    Article  PubMed  CAS  Google Scholar 

  • Allan, A. M., and Harris, R. A. (1987). Acute and chronic ethanol treatments alter GABA receptor-operated chloride channels.Pharmacol. Biochem. Behav. 27:665–670.

    Article  PubMed  CAS  Google Scholar 

  • Allan, A. M., Mayes, G. G., and Draski, L. J. (1991). γ-Aminobutyric acid-activated chloride channels in rats selectively bred for differential acute sensitivity to alcohol.Alc. Clin. Exp. Res. 15:212–217.

    CAS  Google Scholar 

  • Balakleevsky, A., Colombo, G., Fadda, F., and Gessa, G. L., (1990). Ro 19-4603, a benzodiazepine receptor inverse agonist, attenuates voluntary ethanol consumption in rats selectively bred for high ethanol preference.Alcohol Alcohol.25:449–452.

    PubMed  CAS  Google Scholar 

  • Bateson, A. N., Leshem, A., and Darlinson, M. G. (1991). γ-Aminobutyric acidA receptor heterogeneity in increased by alternative splicing of a novel β-subunit gene transcript.J. Neurochem. 56:1437–1440.

    PubMed  CAS  Google Scholar 

  • Belknap, J. K. (1992). Empirical estimates of Bonferroni corrections for use in chromosome mapping studies with the BXD recombinant inbred strains.Behav. Genet. 22: 677–684.

    PubMed  CAS  Google Scholar 

  • Belknap, J. K., Metten, P., Helms, M. L., O'Toole, L. A., Angeli-Gade, S., Crabbe, J. C., and Phillips, T. J. (1993). Quantitative trait loci (QTLs) applications to substances of abuse: Physical dependence studies with nitrous oxide and ethanol in BXD mice.Behav. Genet. 23:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Biggio, G., Concas, A., and Costa, E. (1992). Molecular, pharmacological, and clinical aspects: Adv. Biochem. Psychopharm. In Biggio, G., Concas, A., and Costa, E. (eds.),GABAergic Synaptic Transmission, Vol 47, Raven Press, New York, p. 469.

    Google Scholar 

  • Bormann, J. (1988). Electrophysiology of GABAA and GABAB receptor subtypes.Trends Neurosci.11:112–116.

    Article  PubMed  CAS  Google Scholar 

  • Buck, K. J. (1996). Strategies for mapping and identifying quantitative trait loci specifying behavioral responses to alcohol.Alc. Clin. Exp. Res. 19:795–801.

    Google Scholar 

  • Buck, K. J., and Harris, R. A. (1990). Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels: Chronic effects of ethanol.J. Pharmacol. Exp. Ther. 23:713–719.

    Google Scholar 

  • Buck, K. J., and Harris, R. A. (1991a). Chronic ethanol exposure of Xenopus oocytes expressing mouse brain mRNA reduced GABAA receptor-activated current and benzodiazepine modulation.Mol. Neuropharmacol. 1: 59–64.

    Google Scholar 

  • Buck, K. J., and Harris, R. A. (1991b). Neuroadaptive responses to chronic ethanol.Alcoholism (NY) 15:460–470.

    CAS  Google Scholar 

  • Buck, K. J., McQuilken, S. J., and Harris, R. A. (1991a). Modulation of γ-aminobutyric acidA receptor-operated chloride channels by benzodiazepine inverse agonists is related to genetic differences in ethanol withdrawal seizure severity.J. Neurochem. 57:2100–2105.

    PubMed  CAS  Google Scholar 

  • Buck, K. J., Hahner, L., Sikela, J., and Harris, R. A. (1991b). Chronic ethanol treatment alters brain levels of γ-aminobutyric acidA receptor subunit mRNAs: Relationship to genetic differences in ethanol withdrawal seizure severity.J. Neurochem. 57:1452–1455.

    PubMed  CAS  Google Scholar 

  • Buck, K. J., Metten, P., Belknap, J. K., and Crabbe, J. C. Loci influencing genetic predisposition to acute alcohol dependence/withdrawal map to murine chromosomes I, 4, and 11. (unpublished).

  • Bultman, S. J., Michaud, E. J., and Woychik, R. P. (1992). Molecular characterization of the mouseagouti loci.Cell 71:1195–1204.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. A., Deutch, A. Y., Gallipoli, P. Z., and Amara, S. G. (1992). Functional expression and CNS distribution of a β-alanine-sensitive neuronal GABA transporter.Neuron 9:337–348.

    PubMed  CAS  Google Scholar 

  • Coffman, J. A., and Petty, F. (1985). Plasma GABA levels in chronic alcoholics.Am. J. Psychiat. 142:1204–1205.

    PubMed  CAS  Google Scholar 

  • Cooper, B. R., Virk, K., Ferris, R. M., and White, H. L. (1979). Antagonism of the ethanol susceptibility to audiogenic seizures during alcohol withdrawal in the rat by γ-aminobutyric acid (GABA) and GABAmimetic agents.J. Pharmacol. Exp. Ther. 209:396–403.

    PubMed  CAS  Google Scholar 

  • Copeland, N. G., Jenkins, N. A., Gilbert, D. J., Eppig, J. T., Maltais, L. J., Miller, J. C., Dietrich, W. F., Weaver, A., Lincoln, S. E., Steen, R. G., Stein, L. D., Nadeau, J. H., and Lander, E. S. (1993). A genetic linkage map of the mouse: Current applications and future prospects.Science 255:57–66.

    Google Scholar 

  • Crabbe, J. C., and Belknap, J. K. (1990). Genetic approaches to drug dependence.Trends Pharmacol. Sci. 13:212–219.

    Google Scholar 

  • Crabbe, J. C., Kosobud, A., Young, E. R., and Janowsky, J. S. (1983). Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains.Neurobehav. Toxicol. Terat. 5:181–187.

    CAS  Google Scholar 

  • Crabbe, J. C., Belknap, J. K., and Buck, K. J. (1994). Genetic animal models of alcohol and drug abuse.Science 264: 1715–1723.

    PubMed  CAS  Google Scholar 

  • Cutting, G. R., Lu, L., O'Hara, B. F., Kasch, L. M., Montrose-Rafizadeh, C., Donovan, D. M., Shimada, S., Antonarakis, S. E., Guggino, W. B., Uhl, G. R.,et al. (1991). Cloning of the γ-aminobutyric acid (GABA) rhol cDNA: A GABA receptor subunit highly expressed in the retina.Proc. Natl. Acad. Sci. USA 88:2673–2377.

    PubMed  CAS  Google Scholar 

  • Cutting, G. R., Curristin, S., Zoghbi, H., O'Hara, B., Seldin, M. F., and Uhl, G. R. (1992). Identification of a putative γ-aminobutyric acid (GABA receptor subunit rho2 (GABRR2) and rhol (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4.Genomics 12:801–806.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, J. A., and Walton, N. Y. (1977). Diazepam maintenance of alcohol preference during alcohol withdrawal.Science 198:307–309.

    PubMed  CAS  Google Scholar 

  • Dietrich, R. A., Dunwoddie, T. V., Harris, R. A., and Erwin, V. G. (1989). Mechanism of action of ethanol: Initial central nervous system actions.Pharmacol. Rev. 41:491–537.

    Google Scholar 

  • Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S., Patel, N., and Tobin, A. J. (1991). Two genes encode distinct glutamate decarboxylases.Neuron 7:91–100.

    Article  PubMed  CAS  Google Scholar 

  • Erlander, M. G., and Tobin, A. J. (1992). A transcriptional regulatory element of the gene encoding the 67,000-Mr form of human glutamate decarboxylase is similar to aDrosophila regulatory element.J. Neurochem. 58:2182–2190.

    PubMed  CAS  Google Scholar 

  • Feldblum, S., Ackermann, R. F., and Tobin, A. J. (1990). Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy.Neuron 5:361–371.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, J. M., Leibel, R. L., and Bahary, N. (1991). Molecular mapping of obesity genes.Mamm. Genome 1: 130–144.

    Article  PubMed  CAS  Google Scholar 

  • Frye, G. D., McCown, T. J., and Breese, G. R. (1983). Differential sensitivity of ethanol withdrawal signs in the rat to GABAmimetics: Blockade of audiogenic seizures but not forelimb tremors.J. Pharmacol. Exp. Ther. 226: 720–725.

    PubMed  CAS  Google Scholar 

  • Gonzalez, L. P., and Hetting, M. K. (1984). Intranigral muscimol suppresses ethanol withdrawal seizures.Brain Res. 298:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Grief, K. F., Erlander, M. G., Tallakaratne, N. J. K., and Tobin, A. J. (1991). Postnatal expression of glutamate carboxylase in developing rat cerebellum.Neurochem. Res. 16:235–242.

    Google Scholar 

  • Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M., Davidson, N., Lester, H. A., and Kanner, B. I. (1990). Cloning and expression of a rat brain GABA transporter.Science 249:1303–1306.

    PubMed  CAS  Google Scholar 

  • Hadingham, K. L., Harkness, P. C., McKernan, R. M., Quirk, K., LeBourdelles, B., Horne, A. L., Kemp, J. A., Barnard, E. A., Ragan, C. I., and Whiting, P. J. (1992). Stable expression of mammalian type A γ-aminobutyric acid receptors in mouse cells: Demonstration of functional assembly of benzodiazepine-responsive sites.Proc. Natl. Acad. Sci. USA 89:6378–6382.

    PubMed  CAS  Google Scholar 

  • Harris, R. A., McQuilkin, S. J., Paylor, R., Abeliovich, A., Tonegawa, S., and Wehner, J. M. (1996). Mutant mice lacking the γ isoform of protein kinase C show decreased behavioral actions of ethanol and altered function of γ-aminobutyrate type A receptors.Proc. Natl. Acad. Sci. USA 92:3658–3662.

    Google Scholar 

  • Herrmann, B. G., Labiet, S., Poustka, A., King, T. R., and Lehrach, H. (1990). Cloning of theT gene required in mesoderm formation in the mouse.Nature 343:617–622.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, B. H., Lumeng, L., Wu, J.-Y., and Li, T.-K. (1990). Increased number of GABAergic terminals in the nucleus accumbens is associated with alcohol preference in rats.Alcoholism (NY) 14:503–507.

    CAS  Google Scholar 

  • June, H. L., Lummis, G. H., Colker, R. E., Moore, T., and Lewis, M. J. (1991). Rol5-4513 attenuates the consumption of ethanol in deprived rats.Alcohol. Clin. Exp. Res. 15:406–411.

    PubMed  CAS  Google Scholar 

  • Kaufman, D. L., Houser, C. R., and Tobin, A. J. (1991). Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions.J. Neurochem. 56: 720–723.

    PubMed  CAS  Google Scholar 

  • Keir, W. J., and Morrow, A. L. (1996). Differential expression of GABAA receptor subunit mRNAs in ethanol-naive withdrawal seizure resistant (WSR) vs. withdrawal seizure prone (WSP) mouse brain.Brain Res. Molec. Brain Res. 25:200–208.

    Google Scholar 

  • Kingsley, D. M., Bland, A. E., Grubber, J. M., Marker, P. C., Russell, L. B., Copeland, N. G., and Jenkins, N. A. (1992). The mouseshort ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGFß superfamily.Cell 71:399–410.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R. L., Mascia, M. P., Whiting, P. J., and Harris, R. A. (1995). GABAA receptor function and binding in stably transfected cells: Chronic ethanol treatment.Alcohol. Clin. Exp. Res. 19:1338–1344.

    PubMed  CAS  Google Scholar 

  • Kofuji, P., Wang, J. B., Moss, S. J., Huganir, R. L., and Burt, D. R. (1991). Generation of two forms of the γ-aminobutyric acid γ2-subunit in mice by alternative splicing.J. Neurochem. 56:713–715.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., and Schork, N. J. (1994). Genetic dissection of complex traits.Science 265:2037–2048.

    PubMed  CAS  Google Scholar 

  • Lander, E. and Kruglyak, L. (1996). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results.Nature Genet.11:241–247.

    Google Scholar 

  • Liu, Q. R., Lopez-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson, N. (1993). Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain.J. Biol. Chem. 268:2106–2112.

    PubMed  CAS  Google Scholar 

  • Markel, P., and Johnson, T. (1994). Initial characterization of STS markers in the LSXSS series of recombinant inbred strains.Mamm. Genome 5:199–202.

    Article  PubMed  CAS  Google Scholar 

  • Marley, R. J., Stinchcomb, A., and Wehner, J. M. (1988). Further characterization of benzodiazepine receptor differences in long-sleep and short-sleep mice.Life Sci.43: 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  • McBride, W. J., Murphy, J. M., Lumeng, L., and Li, T.-K. (1988). Effects of Ro15-4513, fluoxetine, and desipramine on the intake of ethanol, water and food by the alcohol-preferring (P) and nonpreferring (NP) lines of rats.Pharmacol. Biochem. Behav. 30:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, T. D., Trullas, R., and Skolnick, P. (1988). Differences in the biophysical properties of the benzodiazepine/γ-aminobutyric acid receptor chloride channel complex in the long-sleep and short-sleep mouse lines.J. Neurochem. 51:642–647.

    PubMed  CAS  Google Scholar 

  • Mehta, A. K., and Ticku, M. K. (1989). Chronic ethanol treatment alters the behavioral effects of Ro15-4513, a partially negative ligand for benzodiazepine binding sites.Brain Res. 489:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Mhatre, M. C., and Ticku, M. K. (1992). Chronic ethanol administration alters γ-aminobutyric acidA receptor gene expression.Mol. Pharmacol. 42:415–422.

    PubMed  CAS  Google Scholar 

  • Mhatre, M. C., Pena, G., Sighart, W., and Ticku, M. K. (1993). Antibodies specific for GABAA receptor α subunits reveal that chronic alcohol treatment down-regulates α-subunit expression in rat brain regions.J. Neurochem. 61:1620–1625.

    PubMed  CAS  Google Scholar 

  • Miller, M. W., Duhl, D. M. J., Vrieling, H., Cordes, S., Ollmann, M. M., Winkes, B. M., and Barsh, G. S. (1993). Cloning of the mouseagouti gene predicts a secreted protein ubiquitously expressed in mice carrying thelethal yellow mutation.Genes Dev. 7:454–467.

    PubMed  CAS  Google Scholar 

  • Morrow, A. L., Suzdak, P. D., Karanian, J., and Paul, S. M. (1988). Chronic ethanol administration alters γ-aminobutyric acid-, pentobarbital-, and ethanol-mediated36CI???-uptake in cerebral cortical synaptoneurosomes.J. Pharmacol. Exp. Ther. 246:158–164.

    PubMed  CAS  Google Scholar 

  • Olsen, R. W., and Venter, J. C. (eds.) (1986). Benzodiazepine/GABA receptor and chloride channels: Structural and functional properties.Receptor Biochemistry and Methodology, Vol. 5, New York.

  • Samson, H. H., Tolliver, G. A., Pfeffer, A. O., Sadeghi, K. G., and Mills, F. G. (1987). Oral ethanol reinforcement in the rat: Effect of the partial inverse benzodiazepine agonist Ro15-4513.Pharmacol. Biochem. Behav. 27:517–519.

    Article  PubMed  CAS  Google Scholar 

  • Samson, H. H., Haraguchi, M., Tolliver, G. A., and Sadeghi, K. G. (1989). Antagonism of ethanol-reinforced behavior by the benzodiazepine inverse agonists Ro15-4513 and FG7142: Relation to sucrose reinforcement.Pharmacol. Biochem. Behav. 33:601–608.

    Article  PubMed  CAS  Google Scholar 

  • Schedl, A., Montoliu, L., Kelsy, G., and Schutz, G. (1993). A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice.Nature 362:258–261.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, P. R. (1990). Structural and functional heterogeneity of GABA/benzodiazepine receptors.Proc. Aust. Neurosci. Soc. 1:46.

    Google Scholar 

  • Sigel, E., Baur, R., and Malherbe, P. (1993). Recombinant GABAA receptor function and ethanol.FEBS Lett.313:113–117.

    Google Scholar 

  • Sighart, W. (1992). GABAA receptors: Ligand-gated Cl ion channels modulated by multiple drug-binding sites.Trends Pharmacol. Sci. 13:446–450.

    Google Scholar 

  • Silver, L. M., Nadeau, J. H., and Goodfellow, P. N. (1993). Encyclopedia of the mouse genome III.Mammal. Genome 4:S1-S283.

    Google Scholar 

  • Sivilotti, L., and Nistri, A. (1991). GABA receptor mechanisms in the central nervous system.Prog. Neurobiol. 36:35–92.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, W. M., Dausman, J., Beard, C., Johnson, C., Lawrence, J. B., and Jaenisch, R. (1993). Germ line transmission of a yearst artificial chromosome spanning the murine α1(1) collagen locus.Science 259:1904–1907.

    PubMed  CAS  Google Scholar 

  • Stubbs, L. (1992). Long-range walking techniques in positional cloning strategies.Mamm. Genome 3:127–142.

    Article  PubMed  CAS  Google Scholar 

  • Suzdak, P. D., Schwartz, R. D., Skolnick, P., and Paul, S. M. (1986). Ethanol stimulates γ-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes.Proc. Natl. Acad. Sci. USA 83:4071.

    PubMed  CAS  Google Scholar 

  • Vidal, S. M., Malo, D., Vogan, K., Skamene, E., and Gros, P. (1993). Natural resistance to infection with intracellular parasites: Isolation of a candidate for.Bcg. Cell 73:469–485.

    CAS  Google Scholar 

  • Wafford, K. A., Burnett, D. M., Dunwiddie, T. V., and Harris, R. A. (1990). Genetic differences in the ethanol sensitivity of GABAA receptors expressed inXenopus oocytes.Science 249:291–294.

    PubMed  CAS  Google Scholar 

  • Wafford, K. A., Burnett, D. M., Leidenheimer, N. J., Burt, D., Wang, J. B., Kofuji, P., Dunwiddie, T. V., Harris, R. A., and Sikela, J. M. (1991). Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires eight amino acids contained in the γ2L subunit of the receptor complex.Neuron 7:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Wafford, K. A., and Whiting, P. J. (1992). Ethanol potentiation of GABAA receptors requires phosphorylation of the altermatively spliced variant of the γ2 subunit.FEBS Lett.313:113–117.

    Article  PubMed  CAS  Google Scholar 

  • Whiting, P., McKernan, R. M., and Iversen, L. L. (1990). Another mechanism for creating diversity in γ-aminobutyrate type A receptors: RNA splicing directs expression of two forms of γ2 subunit, one of which contains a protein kinase C phosphorylation site.Proc. Natl. Acad. Sci. USA 87:9966–9970.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, K.J. Molecular genetic analysis of the role of GABAergic systems in the behavioral and cellular actions of alcohol. Behav Genet 26, 313–323 (1996). https://doi.org/10.1007/BF02359387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02359387

Key Words

Navigation