Skip to main content
Log in

Extensive introgression of Middle American germplasm into Chilean common bean cultivars

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Summary

The genetic diversity of 95. representative Chilean common bean (Phaseolus vulgaris L.) landraces was analyzed using phaseolin seed protein and eight isozyme systems as genetic markers. Four types of phaseolin were found, “C”, “T”, “S” and “H”, in decreasing order of frequency. Each type had a different distribution between the Northern and Southern regions of the country. Nei’s genetic distance based on isozyme diversity indicated that a high percentage of the total variation found in this sample occurred between landraces and only a small percentage of the variation was detected within populations. Cluster analysis based on Nei’s genetic distance and a principal component analysis of isozyme frequencies did not detect a clear association between the geographic distribution of the landraces and their isozyme constitution. However, Nei’s genetic distance analysis clustered the bean landraces into two major groups which had a specific isozyme pattern, seed color, and seed size. The genetic analysis also detected a rare polymorphism for theMdh-2 locus, a null allele at theDiap-2 locus, and polymorphism for theAco-2 locus. The principal component analysis of isozyme frequencies showed that only 30% of the genotypes analyzed were similar to the Andean check and 5% of the samples were similar to Middle American check. This finding suggests a high frequency of hybridization between the Middle America and Andean gene pools in cultivated common bean from Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassiri, A. & M. W. Adams, 1978a. Evaluation of bean cultivar relationships by means of isozyme electrophoretic patterns. Euphytica 27: 707–720.

    CAS  Google Scholar 

  • Bassiri, A. & M. W. Adams, 1978b. An electrophoretic survey of seedling isozymes in severalPhaseolus species. Euphytica 27: 447–459.

    CAS  Google Scholar 

  • Becerra Velasquez, V. L., 1992. Characterization of the genetic diversity in common beans (Phaseolus vulgaris L.) using RFLP markers. M.S. thesis, University of California, Davis.

    Google Scholar 

  • Bliss, F. A., 1980. Common bean. In: W. R. Fehr & H. H. Hadley (Eds.), Hybridization of crop plants, pp. 273–284, Crop Science Society of America; Madison, WI.

    Google Scholar 

  • Bliss, F. A., 1989. Utilization of genetic resources for crop improvement: the common bean. In: A. H. D. Brown, M. T. Clegg, A. L. Kahler & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources, pp. 317–333, Sinauer, Sunderland, MA.

    Google Scholar 

  • Bliss, F. A. & J. W. S. Brown, 1983. Breeding common bean for improved quantity and quality of seed protein. Plant Breed. Rev. 1: 59–102.

    CAS  Google Scholar 

  • Brown, J. W. S., Y. Ma, F. A. Bliss & T. C. Hall, 1981. Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor. Appl. Genet. 59: 83–88.

    CAS  Google Scholar 

  • Brown, J. W. S., J. R. McFerson, F. A. Bliss & T, C. Hall, 1982. Genetic divergence among commercial classes ofPhaseolus vulgaris in relation to phaseolin patterns. HortScience 17: 752–754.

    Google Scholar 

  • Brunner, B. R. & J. S. Beaver, 1989. Estimation of outcrossing of the common bean in Puerto Rico. HortScience 24: 669–671.

    Google Scholar 

  • Debouck, D. G., O. Toro, O. M. Paredes, W. C. Johnson & P. Gepts, 1993. Genetic diversity and ecological distribution ofPhaseolus vulgaris in northwestern South America. Econ. Bot.: 408–123.

  • Doebley, J., 1989. Isozymic evidence and the evolution of crop plants. In: D. E. Soltis & P. S. Soltis (Eds.), Isozymes in plant biology, pp. 165–191, Dioscorides, Portland, OR.

    Google Scholar 

  • Gepts, P., 1988. Phaseolin as an evolutionary marker. In: P. Gepts (Ed), Genetic resources ofPhaseolus beans, pp. 215–241, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Gepts, P., 1989. Genetic diversity of seed storage proteins in plants. In: A. H. D. Brown, M. T. Clegg, A. L. Kahler & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources, pp. 64–82, Sinauer, Sunderland, MA.

    Google Scholar 

  • Gepts, P., 1990. Biochemical evidence bearing on the domestication of Phaseolus beans. Econ. Bot. 44(3S): 28–38.

    Google Scholar 

  • Gepts, P., 1993a. Linkage map of common bean (Phaseolus vulgaris L.). In: S. J. O’Brien (Ed), Genetic Maps, pp. 6.101–6.109, Cold SprigHbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Gepts, P., 1993b. The use of molecular and biochemical markers in crop evolution studies. Evol. Biol. 27: 51–94.

    Google Scholar 

  • Gepts, P. & F. A. Bliss, 1985. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J. Hered. 76: 447–450.

    Google Scholar 

  • Gepts, P. & F. A. Bliss, 1986. Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ. Bot. 40: 469–478.

    CAS  Google Scholar 

  • Gepts, P. & F. A. Bliss, 1988. Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe. and Africa. Econ. Bot. 42: 86–104.

    Google Scholar 

  • Gepts, P., T. C. Osborn, K. Rashka & F. A. Bliss, 1986. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ. Bot. 40: 451–468.

    CAS  Google Scholar 

  • Gepts, P., K. Kmiecik, P. Pereira & F. A. Bliss, 1988. Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. 1. The Americas. Econ. Bot. 42: 73–85.

    Google Scholar 

  • Hamrick, J. L. & M. J. W. Godt, 1989. Allozyme diversity in plant species. In: A. H. D. Borwn, M. T. Clegg, A. L. Kahler & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources, pp. 43–63, Sinauer, Sunderland, MA.

    Google Scholar 

  • Hattana, A., 1986. Components of variability for seed protein of common bean (Phaseolus vulgaris L.). Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • INE, 1990/91. Estadisticas Agropecuarias, Cultivos Anuales Esenciales—Producción fruticola, Producción vitivinicola. Ministerio de Economia, Fomento y Reconstrucción. Santiago, Chile, pp. 11–12.

    Google Scholar 

  • Kelly, J. D., 1989. The presence of dwarf lethalD1 genes inPhaseolus germplasm, lines, and cultivars. Annu. Rept. Bean Improv. Coop. 32: 74–74.

    Google Scholar 

  • Khairallah, M. M., M. W. Adams & B. B. Sears, 1990. Mitochondrial DNA polymorphisms of Malawian bean lines: further evidence for two major gene pools. Theor. Appl. Genet. 80: 753–761.

    Article  CAS  Google Scholar 

  • Koenig, R. & P. Gepts, 1989a. Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris). J. Hered. 80: 455–459.

    Google Scholar 

  • Koenig, R. & P. Gepts, 1989b. Allozyme diversity in wildPhaseolus vulgaris: further evidence for two major centers of diversity. Theor. Appl. Genet. 78: 809–817.

    Article  Google Scholar 

  • Koenig, R., S. P. Singh & P. Gepts, 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 44: 50–60.

    Google Scholar 

  • Koinange, E. M. K. & P. Gepts, 1992. Hybrid weakness in wildPhaseolus vulgaris L. J. Hered. 83: 135–139.

    Google Scholar 

  • Lioi, L., 1989a. Variation of the storage protein phaseolin in common bean (Phaseolin vulgaris L.) from the Mediterranean area. Euphytica 44: 151–155.

    Article  CAS  Google Scholar 

  • Lioi, L., 1989b. Geographical variation of phaseolin patterns in an Old World collection ofPhaseolus vulgaris. Seed Sci. Technol. 17: 317–324.

    Google Scholar 

  • Mutschler, M. A., F. A. Bliss & T. C. Hall, 1980. Variation in the accumulation of seed storage protein among genotypes ofPhaseolus vulgaris L. Plant Physiol. 65: 627–630.

    CAS  Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323.

    CAS  PubMed  Google Scholar 

  • Pearsall, D. M., 1977-78. Early movement of maize between Mesoamerica and South America. J. Steward Anthrop. Soc. 9: 41–75.

    Google Scholar 

  • SAS, 1988. SAS/STAT User’s Guide, Release 6.03 Edition. SAS Institute, Cary, NC.

    Google Scholar 

  • Schinkel, C. & P. Gepts, 1988. Phaseolin diversity in the tepary bean,Phaseolus acutifolius A. Gray. Plant Breed. 101: 292–301.

    Google Scholar 

  • Shii, C. T., M. C. Mok, S. R. Temple & D. W. S. Mok, 1980. Expression of developmental abnormalities in hybrids ofPhaseolus vulgaris L. J. Hered. 71: 218–222.

    Google Scholar 

  • Shii, C. T., M. C. Mok & D. W. S. Mok, 1981. Developmental controls of morphological mutants ofPhaseolus vulgaris L.: Differential expression of mutant loci in plant organs. Dev. Genet. 2: 279–290.

    Article  CAS  Google Scholar 

  • Singh, S. P., 1989. Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 43: 39–57.

    Google Scholar 

  • Singh, S. P. & A. J. Gutiérrez, 1984. Geographical distribution of the DL, and DL2 genes causing hybrid dwarfism inPhaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33: 337–345.

    Google Scholar 

  • Singh, S. P., P. Gepts & D. G. Debouck, 1991a. Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ. Bot. 45: 379–396.

    Google Scholar 

  • Singh, S. P., J. A. Gutiérrez, A. Molina, C. Urrea & P. Gepts, 1991b. Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. Crop Sci. 31: 23–29.

    CAS  Google Scholar 

  • Singh, S. P., R. Nodari & P. Gepts, 1991c. Genetic diversity in cultivated common bean. 1. Allozymes. Crop Sci. 31: 19–23.

    CAS  Google Scholar 

  • Smartt, J., 1990. Grain legumes: evolution and genetic resources. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Smith, J. S. C. & O. S. Smith, 1989. The description and assessment of distances between inbred lines of maize. II. The utility of morphological, biochemical, and genetic descriptors and a scheme for testing of distinctiveness between inbred lines. Maydica 34: 151–161.

    Google Scholar 

  • Sneath, P. H. A. & R. Sokal, 1973. Numerical taxonomy. Freeman, San Francisco, CA.

    Google Scholar 

  • Sprecher, S. L., 1988. Allozyme differentiation between gene pools in common bean (Phaseolus vulgaris L.), with special reference to Malawian germplasm. Ph.D. thesis, Michigan State University, East Lansing, MI.

    Google Scholar 

  • Wall, J. R., 1968. Leucine aminopeptidase polymorphism in Phaseolus shows differential elimination of the donor parent genotype in interspecific backcrosses. Biochem. Genet. 2: 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Wall, J. R. & S. W. Wall, 1975. Isozyme polymorphisms in the study of evolution in thePhaseolus vulgaris-P. coccineus complex of Mexico. In: C. L. Markert (Ed), Isozymes IV, Academic Press, New York.

    Google Scholar 

  • Weeden, N. F., 1984a. Linkage between the gene coding the small subunit of ribulose biphosphate carboxylase and the gene coding malic enzyme inPhaseolus vulgaris. Annu. Rept. Bean Improv. Coop. 27: 123–124.

    Google Scholar 

  • Weeden, N. F., 1984b. Distinguishing among white-seeded bean cultivars by means of allozyme genotypes. Euphytica 33: 199–208.

    Article  CAS  Google Scholar 

  • Weeden, N. F., 1986. Genetic confirmation that the variation in the zymograms of 3 enzyme systems is produced by allelic polymorphism. Annu. Rept. Bean Improv. Coop. 29: 117–118.

    Google Scholar 

  • Wells, W. C., W. H. Isom & J. G. Waines, 1988. Outcrossing rates of six common bean lines. Crop Sci. 28: 177–178.

    Google Scholar 

  • West, N. B. & E. D. Garber, 1967. Genetic studies of variant enzymes. 1. An electrophoretic survey of esterase and leucine aminopeptidase in the genusPhaseolus. Can. J. Genet. Cytol. 9: 640–645.

    CAS  Google Scholar 

  • Zeidler, J., 1977-78. Primitive exchange, prehistoric trade and the problem of Mesoamerican-South American connection. J. Steward Anthrop. Soc. 9: 7–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paredes, O.M., Gepts, P. Extensive introgression of Middle American germplasm into Chilean common bean cultivars. Genet Resour Crop Evol 42, 29–41 (1995). https://doi.org/10.1007/BF02310681

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02310681

Key words

Navigation