Skip to main content
Log in

Summary

From a study of five cases of pronounced fronts in the upper troposphere, it is concluded that the “waterspout” model offers the most satisfactory solution to the problem of connecting frontal boundaries and tropopauses. Composite cross sections of temperature, potential temperature, normal wind component and potential vorticity are presented for the five cases. On the basis of the potential vorticity measurements it is suggested that the most likely explanation for the formation of the high-level front is a folding of the tropopause.

Zusammenfassung

Auf Grund einer Untersuchung von fünf Fällen ausgesprochener Fronten in der höheren Troposphäre wird der Schluß gezogen, daß die „Wasserhosen”-Vorstellung am besten den Zusammenhang zwischen Fronten und Tropopausen darstellt. Kombinierte Querschnitte von Temperatur, potentieller Temperatur, normaler Windkomponente und potentieller Vorticity werden für die fünf Fälle vorgelegt. Auf Grund der Bestimmungen der potentiellen Vorticity wird dargelegt, daß die wahrscheinlichste Erklärung für die Entstehung einer Front in der Höhe in der Annahme einer Faltung der Tropopause besteht.

Résumé

En se fondant sur cinq cas de fronts très nets de la haute troposphère, les auteurs concluent que le schéma de trombe constitue la meilleure solution pour représenter la liaison entre zones frontales et tropopause. Ils donnent des profils combinés de température, de température potentielle, de composantes normales du vent et de vorticity potentielle pour les cinq cas. Ils montrent à l'aide de mesures de la vorticity potentielle que l'explication la plus probable de la formation d'un front en altitude consiste à admettre un plissement de la tropopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berggren, R.: The Distribution of Temperature and Wind Connected with Active Tropical Air in the Higher Troposphere and Some Remarks Concerning Clear Air Turbulence at High Altitude. Tellus4, 43–54 (1952).

    Google Scholar 

  2. —: On Temperature Frequency Distribution in the Free Atmosphere and a Proposed Model for Frontal Analysis. Tellus5, 95–101 (1953).

    Article  Google Scholar 

  3. Bjerknes, J., andE. Palmén: Investigations of Selected European Cyclones by Means of Serial Ascents. Geofys. Publ.12, 62 (1937).

    Google Scholar 

  4. Bjerknes, V.: Dynamic Meteorology and Hydrography. Part II —Kinetmatics. Washington, Carnegie Institution, 175 pp. (1911).

    Google Scholar 

  5. Dickson, R. R.: A Case Study of the Jet Stream. Bull. Amer. Met. Soc.36, 195–204 (1955).

    Article  Google Scholar 

  6. Endlich, R.: Flight Aspects of Jet Streams and Mountain Waves, Part I. Abstract in Bull. Amer. Met. Soc.37, 539 (1956).

    Google Scholar 

  7. Kleinschmidt, E.: Die Entstehung einer Höhenzyklone über Nordamerika. Tellus7, 96–111 (1955).

    Article  Google Scholar 

  8. Matthewman, A. G.: Meteorological Office Discussion. Frontal Analysis in the Higher Troposphere and the Lower Stratosphere. Met. Mag.83, 87 (1954).

    Google Scholar 

  9. Newton, C. W.: Frontogenesis and Frontolysis as a Three-Dimensional Process. J. Met.11, 449–461 (1954).

    Article  Google Scholar 

  10. Palmén, E.: Aerologische Untersuchungen der atmosphärischen Störungen. Mitt. met. Inst. Univ. Helsingf. No. 25 (1933).

  11. —: On the Distribution of Temperature and Wind in the Upper Westerlies. J. Met.5, 20–27 (1948).

    Article  Google Scholar 

  12. Palmén, E.: Vertical Circulation and Release of Kinetic Energy during the Development of Hurricane Hazel into an Extratropical Storm. Studies in Weather Analysis and Forecasting. Final Report under Contract AF 19 (604)-1293, University of Chicago (1957).

  13. —, andK. M. Nagler: The Formation and Structure of a Largescale Disturbance in the Westerlies. J. Met.6, 227–242 (1949).

    Google Scholar 

  14. —, andC. W. Newton: A Study of the Mean Wind and Temperature Distribution in the Vicinity of the Polar Front in Winter. J. Met.5, 220–226 (1948).

    Article  Google Scholar 

  15. Reed, R. J.: A Study of a Characteristic Type of Upper-Level Frontogenesis. J. Met.12, 226–237 (1955).

    Article  Google Scholar 

  16. Riehl, H.: Correspondence. J. Met.13, 313–314 (1956).

    Article  Google Scholar 

  17. —, andH. Maynard: Exploration of the Jet Stream by Aircraft during the 1952–1953 Winter. J. Met.12, 26–35 (1955).

    Article  Google Scholar 

  18. Sawyer, J. S.: Day-to-day Variations in the Tropopause. Geophys. Mem.11, 40 (1954).

    Google Scholar 

  19. —: The Free Atmosphere in the Vicinity of Fronts. Geophys. Mem.12, 24 (1955).

    Google Scholar 

  20. Staley, D. O.: Evaluation of the Physical Processes Occurring at and near the Tropopause. Unpublished Thesis. Seattle, University of Washington, 121 pp. (1956).

    Google Scholar 

  21. Van Mieghem, J.: Analyse aérologique d'un front froid remarquable. Mém. Inst. Mét. Belg.VII, 85 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Contribution No. 37, Department of Meteorology and Climatology. —The research reported in this article has been supported by the Geophysical Research Directorate, Air Force Cambridge Research Center, under Contract No. AF 19 (604)-1811.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, R.J., Danielsen, E.F. Fronts in the vicinity of the tropopause. Arch. Met. Geoph. Biokl. A. 11, 1–17 (1958). https://doi.org/10.1007/BF02247637

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247637

Keywords

Navigation