Skip to main content
Log in

The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We have previously shown that mitochondrial membrane potential (δψ) drop promoted by prooxidants and Ca2+ can be reversed but not sustained by ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) unless dithiothreitol (DTT), a disulfide reductant, is also added [Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E. (1993).Arch. Biochem. Biophys. 307, 1–7]. In this study we show that catalase or ADP are also able to potentiate this EGTA effect. When EGTA is added long after (12 min) the completion of swelling or δψ elimination, no membrane resealing occurs unless the EGTA addition was preceded by the inclusion of DTT, ADP, or catalase soon after δψ was collapsed. Total δψ recovery by EGTA is obtained only in the presence of ADP. The sensitivity of the ADP effect to carboxyatractyloside strongly supports the involvement of the ADP/ATP carrier in this mechanism. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane proteins shows that protein aggregation due to thiol cross-linkage formed during δψ drop continues even after δψ is already eliminated. Titration with 5,5′-dithio-bis(2-nitrobenzoic acid) supports the data indicating that the formation of protein aggregates is paralleled by a decrease in the content of membrane protein thiols. Since the presence of ADP and EGTA prevents the progress of protein aggregation, we conclude that this process is responsible for both increased permeability to larger molecules and the irreversibility of δΩ drop. The protective effect of catalase suggests that the continuous production of protein thiol cross-linking is mediated by mitochondrial generated reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Nasser, I., and Crompton, M. (1986).Biochem. J. 239, 19–29.

    PubMed  Google Scholar 

  • Bernardes, C. F., Meyer-Fernandes, J. R., Basseres, D. S., Castilho, R. F., and Vercesi, A. E. (1994).Biochim. Biophys. Acta 1188, 93–100.

    PubMed  Google Scholar 

  • Bernardi, P., Broekemeier, K., and Pfeiffer, D. (1994).J. Bioenerg. Biomembr. 26, 509–517.

    PubMed  Google Scholar 

  • Castilho, R. F., Kowaltowski, A. J., Meinicke, A. R., Bechara, E. J. H., and Vercesi, A. E. (1995a).Free Radical Biol. Med. 18, 479–486.

    Google Scholar 

  • Castilho, R. F., Kowaltowski, A. J., Meinicke, A. R., and Vercesi, A. E. (1995b).Free Radical Biol. Med. 18, 55–59.

    Google Scholar 

  • Crompton, M. (1990). InCalcium and the Heart (Langer, G. A., ed.), Raven, New York, pp. 167–198.

    Google Scholar 

  • Crompton, M., Costi, A., and Hayat, L. (1987).Biochem. J. 245, 915–918.

    PubMed  Google Scholar 

  • Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., and Vercesi, A. E. (1990).J. Biol. Chem. 265, 19955–19960.

    PubMed  Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258, C755-C786.

    PubMed  Google Scholar 

  • Gunter, T. E., Gunter, K. K., Sheu, S. -S., and Gavin, C. E. (1994).Am. J. Physiol. 267, C313-C339.

    PubMed  Google Scholar 

  • Harbury, P. B., Zhang, T., Kim, P. S. and Alber, T. (1993).Science 262, 1401–1407.

    PubMed  Google Scholar 

  • Igbavboa, U., Zwizinski, C. W., Pfeiffer, D. R. (1989).Biochem. Biophys. Res. Commun. 161, 619–625.

    PubMed  Google Scholar 

  • Imberti, R., Nieminen, A. L., Herman, B., Lemasters, J. J. (1992).Res. Commun. Chem. Pathol. Pharmacol. 78, 27–38.

    PubMed  Google Scholar 

  • Jensen, B. D., Gunter, K. K., and Gunter, T. E. (1986).Arch. Biochem. Biophys. 248, 305–323.

    PubMed  Google Scholar 

  • Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, J. (1979).J. Membr. Biol. 49, 105–121.

    PubMed  Google Scholar 

  • Klingenberg, M. (1989).Arch. Biochem. Biophys. 270, 1–14.

    PubMed  Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. (1995).Am. J. Physiol. 269, C141–147.

    PubMed  Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F., Vercesi, A. E. (1996a).FEBS Lett. 378, 150–152.

    PubMed  Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F., Grijalba, M. T., Bechara, E. J. H., Vercesi, A. E. (1996b).J. Biol. Chem. 271, 2929–2934.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970).Nature 227, 680–685.

    PubMed  Google Scholar 

  • Maddaiah, V. T., and Kumbar, U. (1993).J. Bioenerg. Biomembr. 25, 419–427.

    PubMed  Google Scholar 

  • Majima, E., Shinohara, Y., Yamaguchi, N., Hong, Y., and Terada, H. (1994).Biochemistry 33, 9530–9536.

    PubMed  Google Scholar 

  • McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992).Proc. Natl. Acad. Sci. USA 89, 3170–3174.

    PubMed  Google Scholar 

  • Muratsugu, M., Kamo, N., Kurihara, K., and Kobatake, J. (1977).Biochim. Biophys. Acta 464, 613–619.

    PubMed  Google Scholar 

  • Nazareth, W., Nasser, Y., and Crompton, M. (1991).J. Mol. Cell. Cardiol. 23, 1351–1354.

    PubMed  Google Scholar 

  • Novgorodov, S. A., Gudz, T. I., Brierley, G. P., and Pfeiffer, D. R. (1994).Arch. Biochem. Biophys. 311, 219–228.

    PubMed  Google Scholar 

  • Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L. (1993).J. Biol. Chem. 268, 13791–13798.

    PubMed  Google Scholar 

  • Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P. (1994).J. Biol. Chem. 269, 16638–16642.

    PubMed  Google Scholar 

  • Scherer, B., and Klingenberg, M. (1974).Biochemistry 13, 161–169.

    PubMed  Google Scholar 

  • Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E. (1993).Arch. Biochem. Biophys. 307, 1–7.

    PubMed  Google Scholar 

  • Vercesi, A. E. (1984).Arch. Biochem. Biophys. 231, 86–91.

    PubMed  Google Scholar 

  • Vercesi, A. E. (1993).Brazilian J. Med. Biol. Res. 26, 441–457.

    Google Scholar 

  • Vercesi, A. E., Castilho, R. F., Meinicke, A. R., Valle, V. G. R., Hermes-Lima, M., and Bechara, E. J. H. (1994).Biochim. Biophys. Acta 1188, 86–92.

    PubMed  Google Scholar 

  • Vignais, P. V., and Vignais, P. M. (1972).FEBS Lett 26, 27–31.

    PubMed  Google Scholar 

  • Zoratti, M., and SzabÒ, I. (1995).Biochim. Biophys. Acta 1241, 139–176.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castilho, R.F., Kowaltowski, A.J. & Vercesi, A.E. The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioenerg Biomembr 28, 523–529 (1996). https://doi.org/10.1007/BF02110442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110442

Key words

Navigation