Skip to main content
Log in

Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

TheXenopus laevis 68-kd and 74-kd albumin amino acid sequences are examined with respect to their relationship to the other known members of the albumin/α-fetoprotein/vitamin D-binding protein gene family. Each of the three members of this family presents a unique pattern of conserved regions indicating a differential selective pressure related to specific functional characteristics. Furthermore, an evolutionary tree of these genes was deduced from the divergence times calculated from direct nucleotide sequence comparisons of individual gene pairs. These calculations indicate that the vitamin D-binding protein/albumin separation occurred 560–600 million years (Myr) ago and the albumin/α-fetoprotein divergence 280 Myr ago. This observation leads to the hypothesis according to which the albumin/α-fetoprotein gene duplication occurred shortly after the amphibian/reptile separation. Consequently, and unlike mammals, amphibians and fishes should lack anα-fetoprotein in their serum at larval stages, which is consistent with a recent analysis of serum proteins inXenopus laevis larvae. This hypothesis now will have to be tested further in additional lower vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander Eiferman F, Young PR, Scott RW, Tilghman SM (1981) Intragenic amplification and divergence in the mouseα-fetoprotein gene. Nature 294:713–718

    PubMed  Google Scholar 

  • Alexander F, Young PR, Tilghman SM (1984) Evolution of the albumin:α-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence. J Mol Biol 173:159–176

    PubMed  Google Scholar 

  • Bisbee CA, Baker MA, Wilson AC, Hadzi-Azimi J, Fischberg M (1977) Albumin phylogeny for clawed frogs (Xenopus). Science 195:785–787

    PubMed  Google Scholar 

  • Brown JR (1975) Structure of bovine serum albumin. Fed Proc 34:591

    Google Scholar 

  • Brown JR (1976) Structural origins of mammalian albumin. Fed Proc 35:2141–2144

    PubMed  Google Scholar 

  • Carroll RL (1969) Origin of reptiles. In: Gans C, Bellairs Ad'A, Parsons TS (eds) Biology of the Reptilia, vol 1. Academic Press, London and New York, pp 1–44

    Google Scholar 

  • Cooke NE (1986) Rat vitamin D binding protein: determination of the full-length primary structure from cloned cDNA. J Biol Chem 261:3441–3450

    PubMed  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 345–352

    Google Scholar 

  • Doolittle RF (1986) Of URFs and ORFs. University Science Books, Mill Valley CA

    Google Scholar 

  • Dugaiczyk A, Law SW, Dennison OE (1982) Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci USA 79:71–75

    PubMed  Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668.

    PubMed  Google Scholar 

  • Germond JE, Walker P, ten Heggeler B, Brown-Luedi M, de Bony E, Wahli W (1984) Evolution of vitellogenin genes: comparative analysis of the nucleotide sequences downstream of the transcription initiation site of fourXenopus laevis and one chicken gene. Nucleic Acids Res 12:8595–8609

    PubMed  Google Scholar 

  • Gibbs PEM, Dugaiczyk A (1987) Origin of structural domains of the serum-albumin gene family and a predicted structure of the gene for vitamin D-binding protein. Mol Biol Evol 4: 364–379

    PubMed  Google Scholar 

  • Goad WB, Kanehisa MI (1982) Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Res 10:247–263

    PubMed  Google Scholar 

  • Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of haemoglobin. Nature 253:603–608

    PubMed  Google Scholar 

  • Gorin MB, Cooper DL, Eiferman F, Van der Rijn P, Tilghman SM (1981) The evolution ofα-fetoprotein and albumin. J Biol Chem 256:1954–1959

    PubMed  Google Scholar 

  • Graf J-D, Fischberg M (1986) Albumin evolution in polyploid species of the genusXenopus. Biochem Genet 24:821–837

    PubMed  Google Scholar 

  • Harper ME, Dugaiczyk A (1983) Linkage of the evolutionarily-related serum albumin andα-fetoprotein genes within q11-22 of human chromosome 4. J Hum Genet 35:565–572

    Google Scholar 

  • Hood L, Campbell MH, Elgin SCR (1975) The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet 9:305–353

    PubMed  Google Scholar 

  • Hosbach HA, Wyler T, Weber R (1983) TheXenopus laevis globin gene family: chromosomal arrangement and gene structure. Cell 32:45–53

    PubMed  Google Scholar 

  • Ingram RA, Scott RW, Tilghman SM (1981)α-fetoprotein and albumin genes are in tandem in the mouse genome. Proc Natl Acad Sci USA 78:4694–4698

    PubMed  Google Scholar 

  • Innis MA, Miller DL (1980)α-fetoprotein gene expression. J Biol Chem 255:8994–8996

    PubMed  Google Scholar 

  • Jagodzinski LL, Sargent TD, Yang M, Glackin C, Bonner J (1981) Sequence homology between RNAs encoding ratα-fetoprotein and rat serum albumin. Biochemistry 78:3521–3525

    Google Scholar 

  • Kanehisa MI (1982) Los Alamos sequence analysis package for nucleic acids and protein. Nucleic Acids Res 10:183–196

    PubMed  Google Scholar 

  • Kioussis D, Eiferman F, Van de Rijn P, Gorin MB, Ingram RS, Tilghman SM (1981) The evolution ofα-foetoprotein and albumin. J Biol Chem 256:1960–1967

    PubMed  Google Scholar 

  • Knöchel W, Korge E, Basner A, Meyerhof W (1986) Globin evolution in the genusXenopus: comparative analysis of cDNAs coding for adult globin polypeptides ofXenopus borealis andXenopus tropicalis. J Mol Evol 23:211–223

    PubMed  Google Scholar 

  • Lauer J, Ahen C-KJ, Maniatis T (1980) The chromosomal arangement of humanα-like globin genes: sequence homology andα-globin gene deletions. Cell 20:119–130

    PubMed  Google Scholar 

  • Law SW, Dugaiczyk A (1981) Homology between the primary structure ofα-fetoprotein, deduced from a complete cDNA sequence, and serum albumin. Nature 291:201–205

    PubMed  Google Scholar 

  • Lawn RM, Adelman J, Bock SC, Franke AE, Houck CM, Najarian RC, Seeburg PH, Wion KL (1981) The sequence of human serum albumin cDNA and its expression inE. coli. Nucleic Acids Res 9:6103–6114

    PubMed  Google Scholar 

  • Lindgren J, Vaheri A, Ruoslahti E (1974) Identification and isolation of a foetoprotein in the chicken. Differentiation 2: 233–236

    PubMed  Google Scholar 

  • May FEB, Westley BR, Wyler T, Weber R (1983) Structure and evolution of theXenopus laevis albumin gene. J Mol Biol 168: 229–249

    PubMed  Google Scholar 

  • Morinaga T, Sakai M, Wegmann TG, Tamaoki T (1983) Primary structures of humanα-fetoprotein and its mRNA. Proc Natl Acad Sci USA 80:4604–4608

    PubMed  Google Scholar 

  • Moskaitis JE, Sargent TD, Smith LH Jr, Pastori RL, and Schoenberg DR (1989)Xenopus laevis serum albumin: sequence of the complementary deoxyribonucleic acids encoding the 68-and 74-kilodalton peptides and the regulation of albumin gene expression by thyroid hormone during development. Mol Endocrinol 3:464–473

    PubMed  Google Scholar 

  • Nardelli D, van het Ship FD, Gerber-Huber S, Samallo J, Haefliger JA, Gruber M, AB G, Wahli W (1987) Comparison of the organization and fine structure of a chicken and aXenopus laevis vitellogenin gene. J Biol Chem 262:15377–15385

    PubMed  Google Scholar 

  • Needleman SB, Wunsch DD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dogson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    PubMed  Google Scholar 

  • Peters T (1977) Serum albumin: recent progress in the understanding of its structure and biosynthesis. Clin Chem 23:5–12

    PubMed  Google Scholar 

  • Romero-Herrera AE, Lehmann H, Joysey KA, Friday AE (1973) Molecular evolution of myoglobin and the fossil record: a phylogenetic synthesis Nature 246:389–395

    PubMed  Google Scholar 

  • Sargent TD, Yang M, Bonner J (1981) Nucleotide sequence of cloned rat serum albumin messenger RNA. Proc Natl Acad Sci USA 78:243–246

    PubMed  Google Scholar 

  • Schoenberg DR (1981) Albumin is encoded by 2 messenger RNAs inXenopus laevis. Nucleic Acids Res 9:6669–6688

    PubMed  Google Scholar 

  • Schoentgen F, Metz-Boutigue M-H, Jollès J, Constans J, Jollès P (1986) Complete amino acid sequence of human vitamin D-binding protein (group-specific component): evidence of a three-fold internal homology as in serum albumin andα-fetoprotein. Biochim Biophys Acta 871:189–198

    PubMed  Google Scholar 

  • Schorpp M, Döbbeling U, Wagner U, Ryffel GU (1988) 5′-flanking and 5′-proximal exon regions of the twoXenopus albumin genes. J Mol Biol 199:83–93

    PubMed  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    PubMed  Google Scholar 

  • Szpirer J, Levan G, Thorn M, Szpirer C (1984) Gene mapping in the rat by mouse-rat somatic cell hybridization: synteny of the albumin and alpha-fetoprotein. Cytogenet Cell Genet 38:142–149

    PubMed  Google Scholar 

  • Tilghman SM (1985) The structure and regulation of theα-fetoprotein and albumin genes. In: MacLean N (ed) Oxford surveys on eukaryotic genes, vol 3. University Press, Oxford, pp 160–206

    Google Scholar 

  • Turcotte B, Guertin M, Chevrette M, Belanger L (1985) Ratα1-fetoprotein messenger RNA: 5′-end sequence and glucocorticoid-suppressed liver transcription in an improved nuclear run-off assay. Nucleic Acids Res 13:2387–2398

    PubMed  Google Scholar 

  • Urano Y, Sakai M, Watanabe K, Tamaoki T (1984) Tandem arrangement of the albumin andα-fetoprotein genes in the human genome. Gene 32:255–261

    PubMed  Google Scholar 

  • Wahli W, Abraham I, Weber R (1978) Retention of the differentiated state by larvalXenopus liver cells in primary culture. Wilhelm Roux's Arch Dev Biol 185:235–248

    Google Scholar 

  • Wahli W, Dawid IB, Wyler T, Jaggi RB, Weber R, Ryffel GU (1979) Vitellogenin inXenopus laevis is encoded in a small family of genes Cell 16:535–549

    PubMed  Google Scholar 

  • Westley B, Weber R (1982) Divergence of the two albumins ofX. laevis: evidence for the glycosylation of the major 74K albumin. Differentiation 22:227–230

    PubMed  Google Scholar 

  • Westley B, Wyler T, Ryffel G, Weber R (1981)Xenopus laevis serum albumins are encoded in two closely related genes. Nucleic Acids Res 9:3557–3574

    PubMed  Google Scholar 

  • Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    PubMed  Google Scholar 

  • Yang F, Luna VJ, McAnelly RD, Naberhaus KH, Cupplies RL, Bowman BH (1985) Evolutionary and structural relationships among the group-specific component, albumin andα-fetoprotein. Nucleic Acids Res 13:8007–8017

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haefliger, D.N., Moskaitis, J.E., Schoenberg, D.R. et al. Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family. J Mol Evol 29, 344–354 (1989). https://doi.org/10.1007/BF02103621

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02103621

Key words