Skip to main content
Log in

Tracer kinetics of plants carbon allocation with continuously produced11CO2

  • Radiochemical Separation and Tracer Techniques
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Parameters of carbon allocation dynamics in plants were measured using11CO2 and tracer kinetics techniques. Mechanical agitation reduced carbon export rate by 33% in cotton seedling's leaf, while storage rate and export pool size increased. Carbon storage and export rates of C4 bunch grasses were higher in the afternoon than in the morning inspite of the decrease in CER.

Water stress of cotton seedlings caused reduction in carbon export rate, and increase in exportable products concentrations and rate of storage. By the third stress day, measurable decreases in CER, transpiration, export rate and export pool size were recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. B. BOUSSINGAULT, Agronomic Chemie Agricole et Physiologie, 2nd ed., Mallett Bachelier, Paris, 1868.

    Google Scholar 

  2. T. F. NEALS, L. D. INCOLL, Bot. Rev., 34 (1968) 107.

    Google Scholar 

  3. J. MOORBY, P. D. JARMAN, Planta, 122 (1975) 155.

    Google Scholar 

  4. D. R. GEIGER, Botanical Gazzet, 140(3) (1979) 241.

    Google Scholar 

  5. J. A. JAQUEZ, Compartmental Analysis in Biology and Medicine, Elsevier, Amsterdam, 1972.

    Google Scholar 

  6. A. RESCIGNS, G. SEGRÉ, Drug and Tracer Kinetics, Blaisdell Publishing Co., Mass., 1966.

    Google Scholar 

  7. Y. FARES, D. W. DeMICHELE, J. D. GOESCHL, D. A. BALTSKONIS, Inter. J. Appl. Radiation Isotopes, 29 (1978) 431.

    Google Scholar 

  8. C. E. MAGNUSON, Y. FARES, J. D. GOESCHL, C. E. NELSON, B. R. STRAIN C. H. JAEGER, E. G. BILPUCH, Radiat. Environ. Biophys., 21 (1982) 51.

    Google Scholar 

  9. C. H. JAEGER, H. HELLMERS, I. D. PEARE HortScience 16 (1981) 176.

    Google Scholar 

  10. M. BERMAN, E. SHAHN, M. F. WEISS, Biophys. J., 2 (1962) 275.

    PubMed  Google Scholar 

  11. D. G. GARDNER, Annals of the New York Academy of Science, 108 (1963) 195.

    Google Scholar 

  12. J. W. COOLEY, P. A. W. LEWIS, P. D. WELCH, IEEE Trans Audio Electroacous, AU-15, No. 2 (1967) 79.

    Google Scholar 

  13. J. A. CADZOW, Discrete Time Systems: An Introduction with Interdisciplinary Applications, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  14. D. W. MARQUARDT, J. Soc. Ind. Appl. Math., 2 (1963) 431.

    Google Scholar 

  15. J. D. GOESCHL, C. E. MAGNUSON, Y. FARES, C. H. JAEGER, C. E. NELSON, B. R. STRAIN, Plant, Cell and Environ., 7, No. 9 (1984) 607.

    Google Scholar 

  16. D. W. DeMICHELE, P. J. H. SHARPE, J. D. GOESCHL, CRC Crit. Rev. Bioeng., 3 (1978) 23.

    PubMed  Google Scholar 

  17. B. R. FONDY, D. R. GEIGER, Plant Physiol., 66 (1980) 945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fares, Y., Goeschl, J.D., Magnuson, C.E. et al. Tracer kinetics of plants carbon allocation with continuously produced11CO2 . Journal of Radioanalytical and Nuclear Chemistry, Articles 124, 105–122 (1988). https://doi.org/10.1007/BF02035510

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02035510

Keywords

Navigation