Skip to main content
Log in

The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Mathematical models of the thermal regime

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15°. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135° or greater than 225°. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchan GD (1983) Predicting bare soil temperature. III. Extension to single-day variation. J Soil Science 33:365–373

    Google Scholar 

  2. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  3. Croft DR, Lilley DG (1977) Heat transfer calculations using finite difference equations. Applied Science Publishers, Ltd, London

    Google Scholar 

  4. Friedmann EI (1977) Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarc J US 12:26–30

    Google Scholar 

  5. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.

    Google Scholar 

  6. Friedmann El, Galun M (1974) Desert algae, lichens, and fungi. In: Brown GW (ed) Desert biology, vol II. Academic Press, New York, pp 165–212

    Google Scholar 

  7. Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Google Scholar 

  8. Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Reddy CA (ed) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  9. Friedmann EI, Ocampo-Friedmann R (1984) The Antarctic cryptoendolithic ecosystem: relevance to exobiology. Origins of Life 14:771–776

    PubMed  Google Scholar 

  10. Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    PubMed  Google Scholar 

  11. Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: continuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287

    PubMed  Google Scholar 

  12. Gates DM (1980) Biophysical ecology. Springer-Verlag, New York

    Google Scholar 

  13. Graser AE, Van Bavel CHM (1982) The effect of soil moisture upon soil albedo. Agric Meteorol 27:17–27

    Google Scholar 

  14. Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des Nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz. Band 9, Heft 3

  15. Jones HG (1983) Plants and microclimate. Cambridge University Press, New York

    Google Scholar 

  16. Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232

    Google Scholar 

  17. Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235

    Google Scholar 

  18. Kershaw KA (1983) The thermal operating-environment of a lichen. Lichenologist 15:191–207

    Google Scholar 

  19. McCullough EC, Porter WP (1971) Computing clear day solar radiation spectra for terrestrial ecological environments. Ecology 52:1008–1015

    Google Scholar 

  20. McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25

    PubMed  Google Scholar 

  21. Miotke F-D (1979) Zur physikalischen Verwitterung im Taylor Valley, Victoria-Land, Antarktis. Polarforschung 49:117–142

    Google Scholar 

  22. Monteith JL (1973) Principles of environmental physics. Edward Arnold, Ltd, London

    Google Scholar 

  23. Müller G (1967) Methods in sedimentary petrology. Hafner Publishing Company, New York

    Google Scholar 

  24. Nienow JA, Meyer MA (1988) Biologically relevant physical measurements in the Ross desert: soil temperature profiles and UV radiation. Antarct J US 21(5):222–224

    Google Scholar 

  25. Robinson N (1966) Solar radiation. Elsevier Publishing Company, New York

    Google Scholar 

  26. Stearns CR (1982) Antarctic automatic weather stations. Antarc J US 17:217–219

    Google Scholar 

  27. Stearns CR, Savage ML (1981) Automatic weather stations. Antarc J US 16:190–192

    Google Scholar 

  28. Swinbank WC (1963) Longwave radiation from clear skies. Quart J Roy Meteorol Soc 89:339–348

    Google Scholar 

  29. Vestal JR, Federle TW, Friedmann EI (1984) The effects of light and temperature on the Antarctic cryptoendolithic microbiota in vitro. Antarc J US 19:173–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienow, J.A., McKay, C.P. & Friedmann, E.I. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Mathematical models of the thermal regime. Microb Ecol 16, 253–270 (1988). https://doi.org/10.1007/BF02011699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02011699

Keywords

Navigation