Skip to main content
Log in

Interactions of bradykinin, calcium, G-protein and protein kinase in the activation of phospholipase A2 in bovine pulmonary artery endothelial cells

  • Molecular Immunopathology
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

Rise in free cytosolic calcium concentrations [Ca2+]i in response to bradykinin and guanosine 5′-O-thiotriphosphate (GTPτS) was related to the action of phospholipase A2 (arachidonic acid release). At 900 μM extracellular CaCl2, bradykinin induced a typical Ca2+ movement consisting of an initial [Ca2+]i peak at approximately 400 nM followed by a sustained increase in the steady-state cytosolic Ca2+ level at approximately 290 nM. As the extracellular CaCl2 concentration was reduced to 100 μM, the bradykinin induced initial spike was reduced followed by only a marginal increase in steady-state cytosolic Ca2+ levels. Treatment of endothelial cells with saponin (0.002% w/w) did not increase [Ca2+]i and saponin treated cells exhibited a very similar pattern of Ca2+ mobilization in response to bradykinin. However, with saponin treatment, GTPτS (100 μM) increased [Ca2+]i at an almost identical tracing exhibited with 50 nM bradykinin stimulation (in either the presence or absence of 0.002% saponin). No additive increase in [Ca2+]i was observed in cells stimulated with both 100 μM GTPτS and 50 nM bradykinin or in bradykinin stimulated cells subsequently exposed to GTPτS. Pertussis toxin (PTX) did not affect the bradykinin induced Ca2+ mobilization. However, as we showed previously [1], PTX inhibited bradykinin stimulated arachidonic acid release. These results indicate transduction of the bradykinin signal by G-protein for both phospholipase A2 (PLA2) activation and Ca2+ mobilization but likely by different Gα subunits, a PTX sensitive and an insensitive subunit. Furthermore, the bradykinin and GTPτS stimulated release of arachidonic acid appears to be only partially dependent on [Ca2+]i. For example, 10 μM ionomycin, a calcium ionophore, did not release arachidonic acid at extracellular CaCl2 concentrations below 300 μM while GTPτS stimulated a greater release of arachidonic acid at 300 and 100 μM CaCl2 than at 900 μM CaCl2. However, at 100 μM CaCl2, ionomycin increased [Ca2+]i to the same level as bradykinin or GTPτS stimulated cells incubated in 900 μM CaCl2.

In previously published experiments [1], we showed that phorbol 12-myristate 13-acetate (TPA) augments bradykinin activated arachidonic acid release in endothelial cells. In the absence of bradykinin, TPA had little effect on arachidonic acid release by endothelial cells. However, in the saponin treated cells, TPA alone (in the absence of bradykinin) caused a marked release of arachidonic acid. The bradykinin and TPA activated arachidonic acid releases were additive. The TPA activated release did not require an increase in [Ca2+]i and occurred in the absence of any added extracellular CaCl2. TPA did not induce an increase in [Ca2+]i in either saponin treated or untreated endothelial cells. This TPA stimulated release of arachidonic acid was totally down-regulated by an 18 h preincubation of the cells in 500 nM TPA but was not inhibited by protein kinase C inhibitor H7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Ricupero, L. Taylor, A. Tlucko, J. Navarro and P. Polgar, Mediat. Inflammation1, 133 (1992).

    Google Scholar 

  2. A. R. Whorton, S. L. Yong, J. L. Data, A. Barachowsky and R. S. Kent, Biochim. Biophys. Acta712, 79 (1982).

    Google Scholar 

  3. W. P. Schilling, L. Rajan and E. Strobl-Jager, J. Biol. Chem.264, 12838 (1989).

    Google Scholar 

  4. R. J. Flower and G. J. Blackwell, Biochem. Pharmacol.25, 285 (1976).

    Google Scholar 

  5. S. L. Hong and D. Deykin, J. Biol. Chem.257, 7151 (1982).

    Google Scholar 

  6. S. L. Hong, N. J. McLaughlin, C. Tzeng and G. Patton, Thrombin Res.38, 1 (1985).

    Google Scholar 

  7. E. A. Jaffe, J. Grulich, B. B. Weksler, G. Hampel and K. Watanabe, J. Biol. Chem.263 8557 (1987).

    Google Scholar 

  8. H. Kaya, G. M. Patton and S. L. Hong, J. Biol. Chem.264, 4972 (1989).

    Google Scholar 

  9. S. Kremer, P. Harper, R. Hegele and K. Skorecki, Can. J. Physiol. Pharmacol.66, 43 (1987).

    Google Scholar 

  10. M. Colden-Stanfield, W. P. Schilling, A. K. Ritchie, S. G. Eskin, L. T. Navarro and D. L. Kunze, Circ. Res.61, 632 (1987).

    Google Scholar 

  11. R. Morgan-Boyd, J. M. Stewart, F. J. Vavrek and A. Hassid, Am. J. Phys.253, c588 (1987).

    Google Scholar 

  12. P. C. Sternweis and I. Pang, Trends Neurosci.13, 122 (1990).

    Google Scholar 

  13. L. Birnbaumer, J. Abramowitz and A. M. Brown, Biochem. Biophys. Acta1031, 163 (1990).

    Google Scholar 

  14. B. J. Buckley, A. Barachowsky, R. J. Dolor and A. R. Whorton, Biochem. J.280, 281 (1991).

    Google Scholar 

  15. A. Lückhoff, U. Pohl, A. Mülsch and R. Busse, Br. J. Pharmacol.95, 189 (1988).

    Google Scholar 

  16. A. R. Whorton, C. E. Willis, R. S. Kent and S. L. Young, Lipids19, 17 (1984).

    Google Scholar 

  17. R. A. Voyno-Yasenetskaya, V. A. Tkachuk, E. G. Cheknyova, M. P. Panchenko, G. Y. Grigorian, R. J. Vavrek, J. M. Stewart and U. S. Ryan, FASEB J.3, 44 (1989).

    Google Scholar 

  18. T. L. Lambert, R. S. Kent and A. R. Worton, J. Biol. Chem.261, 15288 (1986).

    Google Scholar 

  19. C. K. Derian and M. A. Moskowitz, J. Biol. Chem.261, 3831 (1986).

    Google Scholar 

  20. A. Lückhoff, R. Zeh and R. Busse, Pfleüegers Arch.412, 654 (1988).

    Google Scholar 

  21. M. Menconi, G. Hahn and P. Polgar, J. Cell. Physiol.120, 163 (1984).

    Google Scholar 

  22. G. Fiskum, Cell Calcium6, 25 (1985).

    Google Scholar 

  23. S. Chueh and D. L. Gill, J. Biol. Chem.261, 13883 (1986).

    Google Scholar 

  24. S. Nakashima, T. Tohmatsu, H. Hattori, A. Suganuma and Y. Nozawa, J. Biochem.101, 1055 (1987).

    Google Scholar 

  25. G. Grynkiewicz, M. Poenie and R. Y. Tsien, J. Biol. Chem.260, 3440 (1985).

    Google Scholar 

  26. S. Levy and A. Fein, J. Gen. Physiol.85, 805 (1985).

    Google Scholar 

  27. A. Jones, T. W. Lategan, N. J. Lodge, U. S. Ryan, C. van Breeman and D. J. Adams, Tissue and Cell19, 733 (1987).

    Google Scholar 

  28. K. W. Buchan and W. Martin, Br. J. Pharmacol.102, 35 (1991).

    Google Scholar 

  29. W. P. Schilling and S. J. Elliott, Am. J. Physiol.262, H1617 (1992).

    Google Scholar 

  30. T. A. Voyno-Yasenetskaya, M. P. Panchenko, E. V. Nupenko, V. O. Rybin and V. A. Thachuk, FEBS Lett.259, 67 (1989).

    Google Scholar 

  31. S. Gutowski, A. Smrcka, L. Nowak, D. Wu, M. Simon and P. C. Sternweis, J. Biol. Chem.266, 20519 (1991).

    Google Scholar 

  32. S. L. Hong and D. Deykin, J. Biol. Chem.254, 11463 (1979).

    Google Scholar 

  33. S. L. Hong, Prog. Allergy44, 99 (1988).

    Google Scholar 

  34. J. D. Sharp, D. L. White, X. G. Chiou, T. Goodson, G. C. Gamboa, D. McClure, S. Burgett, J. Hoskin, P. L. Skatrud, L. H. Kang, E. F. Robert and R. M. Kramer, J. Biol. Chem.266, 1480 (1991).

    Google Scholar 

  35. J. D. Clark, L.-L. Lin, R. W. Kriz, C. S. Ramesha, L. A. Sultzman, A. Y. Lin and J. L. Knopf, Cell65, 1043 (1991).

    Google Scholar 

  36. A. E. McEachern, E. R. Shelton, S. Bhakta, R. Obernolte, B. Chinh, P. Zuppan, J. Fujisaki, R. W. Aldrich and K. Jarnagin, Proc. Natl. Acad. Sci. USA88, 7724 (1991).

    Google Scholar 

  37. C. L. Jelsema and J. Axelrod, Proc. Natl. Acad. Sci. USA84, 3623 (1987).

    Google Scholar 

  38. D. Kim, D. L. Lewis, L. Graziadei, E. J. Neer, D. Bar-Sagi and D. E. Clapman, Nature337, 557 (1989).

    Google Scholar 

  39. R. M. Burch, Mol. Neurobiol.3, 155 (1989).

    Google Scholar 

  40. R. L. Bell, D. A. Kennedy, N. Stanford and P. W. Majerus, Proc. Natl. Acad. Sci. USA76, 3238 (1979).

    Google Scholar 

  41. Y. Nishizuka, J. Am. Assoc.262, 1826 (1989).

    Google Scholar 

  42. M. J. Berridge, J. Am. Med. Assoc.262, 1834 (1989).

    Google Scholar 

  43. P. J. Parker, G. Kour, R. M. Marais, F. Mitchell, C. Pears, D. Schaap, S. Stabel and C. Webster, Mol. Cell. Endocrinol.65, 1 (1989).

    Google Scholar 

  44. D. Schaap, P. J. Parker, A. Bristol, R. Kriz and J. Knopf, FEBS Lett.243, 351 (1989).

    Google Scholar 

  45. K. Sekiguchi, M. Tsukuda, K. Ogita, U. Kikkawa and Y. Nishizuka, Biochem. Biophys. Res. Commun.145, 797 (1987).

    Google Scholar 

  46. S. Paglin, R. Roy and P. Polgar, J. Biol. Chem.268, 11697 (1993).

    Google Scholar 

  47. K. S. Ha and J. H. Exton, J. Biol. Chem.268, 10534 (1993).

    Google Scholar 

  48. J. Noireaud, C. M. Bright and D. Ellis, J. Mol. Cardiol.21, 291–298 (1989).

    Google Scholar 

  49. A. Y. Lin, M. Wartman, L. Y. Lin, J. L. Kopf, A. Seth and R. J. Davis, Cell72, 269–278 (1993).

    Google Scholar 

  50. K. Ha-Soo and J. H. Exton, J. Biol. Chem.268, 10534 (1989).

    Google Scholar 

  51. F. L. Haddy, T. E. Emerson, J. B. Scott and R. M. Dougherty, Handbook Exp. Pharmacol.25, 362 (1970).

    Google Scholar 

  52. D. Regoli, N. Rhaleb, G. Drapeau, S. Dion, C. Tousignant and P. D'Orleans-Juste, Adv. Exp. Med. Biol.236, 399 (1990).

    Google Scholar 

  53. T. Griesbacher and F. Lembeck, Br. J. Pharmacol.92, 333 (1987).

    Google Scholar 

  54. T. S. Chao, K. L. Byron, K. M. Lee, M. Villereal and M. R. Rosner, J. Biol. Chem.267, 19876 (1992).

    Google Scholar 

  55. G. S. Campbell, L. Pang, T. Miyasaka, A. R. Saltiel and C. Charter-Su, J. Biol. Chem.267, 6074 (1992).

    Google Scholar 

  56. L. L. Lin, M. Wartman, A. Y. Lin and J. L. Knopf, Cell72, 269 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricupero, D., Taylor, L. & Polgar, P. Interactions of bradykinin, calcium, G-protein and protein kinase in the activation of phospholipase A2 in bovine pulmonary artery endothelial cells. Agents and Actions 40, 110–118 (1993). https://doi.org/10.1007/BF01976759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01976759

Keywords

Navigation