Skip to main content
Log in

Surface dielectric constant, surface hydrophobicity and membrane fusion

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Membrane fusion induced by ions and its associated membrane property, surface dielectric constant, were studied with the use of acidic and neutral phospholipid vesicles. The fusion of vesicles was monitored by utilizing two fluorescence fusion assays: fluorescence content mixing method and fluorescence labelled membrane component dilution method. For the surface dielectric constant measurements, a fluorescence method was used which detected the environmental effect on the membrane surface upon the addition of various fusogenic cations. Also, the effects of poly-(ethylene glycol) on both fusion and surface dielectric properties were examined. It was found that the extent of fusion correlated well with the degree of lowering in the dielectric constant of the surface membrane, which corresponds to the increase in hydrophobicity of the membrane surface. This agrees with the previously obtained experimental results that the increase in interfacial tension of the membrane, which also corresponds to the increase in surface hydrophobicity, correlates with the extent of membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, K., Herrmann, A., Gawrisch, K., Pratsch, L. 1988. Water-mediated effects of PEG on membrane properties and fusion.”In: Molecular Mechanisms of Membrane Fusion. S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, and E. Mayhew, editors. pp 255–272. Plenum, New York

    Google Scholar 

  2. Arnold, K., Herrmann, A., Pratsch, L., Gawrisch, K. 1985. The dielectric properties of aqueous solution of poly-(ethylene glycol) and their influence on membrane structure.Biochim. Biophys. Acta 815:515–518

    Google Scholar 

  3. Arnold, K., Zschornig, O., Herold, W., Barthel, D. 1987. Effect of PEG on the electrophoretic mobility of liposomes.Mol. Cryst. Liq. Cryst. 152:357–362

    Google Scholar 

  4. Duzgunes, N., Ohki, S. 1977. Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes.Biochim. Biophys. Acta 467:301–308

    Google Scholar 

  5. Ekerdt, R., Papahadjopoulos, D. 1980. Intermembrane contact affects calcium binding to phospholipid vesicles.Proc. Natl. Acad. Sci. USA 79:2273–2277

    Google Scholar 

  6. Feigenson, G.W. 1986. On the nature of calcium ion binding between phosphatidylserine lamellae.Biochemistry 25:5819–5825

    Google Scholar 

  7. Hauser, H., Finer, G.E., Darke, A. 1977. Crystalline anhydrous Ca-phosphatidylserine bilayers.Biochem. Biophys. Res. Commun. 76:267–274

    Google Scholar 

  8. Hiemenz, P.C. 1977. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York

    Google Scholar 

  9. Hoekstra, D. 1982. Role of lipid phase separation and membrane hydration in phospholipid vesicle fusion.Biochemistry 21:2833–3840

    Google Scholar 

  10. Kimura, Y., Ikegami, A. 1985. Local dielectric properties around polar region of lipid bilayers membranes.J. Membrane Biol. 85:225–231

    Google Scholar 

  11. LeNeveu, D.M., Rand, P., Parsegian, A. 1976. Measurement of forces between lecithin bilayers.Nature (London) 259:601–603

    Google Scholar 

  12. Lippert, E. von 1957. Spektroskopische Bestimmung des Dipolmoments Aromatischer Verbindungen im ersten Angeregten Singulettzustand.Z. Electrochem. 61:962–975

    Google Scholar 

  13. MacDonald, R.I. 1985. Membrane Fusion Due to Dehydration by Polyethylene Glycol, Dextran or Sucrose.Biochemistry 24:4058–4066

    Google Scholar 

  14. Marcelja, S., Radic, N. 1976. Repulsion of interfaces due to bound water.Chem. Phys. Lett. 42:129–130

    Google Scholar 

  15. Mataga, N., Kaifu, Y., Koizumi, M. 1955. The solvent effect on fluorescence spectrum. Changes of solute-solvent interaction during the life time of excited solute molecule.Bull. Chem. Soc. Jpn. 28:690–691

    Google Scholar 

  16. Ohki, S. 1982. A mechanism of divalent ion-induced phosphatidylserine membrane fusion.Biochim. Biophys. Acta 689:1–11

    Google Scholar 

  17. Ohki, S. 1985. Membrane fusion: Theory and experiments.Studia Biophys. 111:95–104

    Google Scholar 

  18. Ohki, S. 1988. Surface tension, hydration energy and membrane fusion.In: Molecular Mechanism of Membrane Fusion. S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, and E. Mayhew, editors. pp. 123–138. Plenum, New York

    Google Scholar 

  19. Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (editors) 1988. Molecular Mechanisms of Membrane Fusion, Plenum, New York

    Google Scholar 

  20. Ohki, S., Duax, J. 1986. Effects of cations and polyamines on the aggregation and fusion of phosphatidylserine membranes.Biochim. Biophys. Acta 861:177–186

    Google Scholar 

  21. Ohki, S., Ohshima, H. 1984. Divalent cation-induced surface tension increase in acidic phospholipid membranes: Ion binding and membrane fusion.Biochim. Biophys. Acta 776:177–182

    Google Scholar 

  22. Parente, T.A., Lentz, B.R. 1986. Rate and extent of poly-(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal content mixing.Biochemistry 25:6678–6688

    Google Scholar 

  23. Portis, A., Newton, C., Pangborn, W., Papahadjopoulos, D. 1979. Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex synergism with Mg2+ and inhibition by spectrin.Biochemistry 18:780–790

    Google Scholar 

  24. Poste, G., Allison, A.C. 1973. Membrane Fusion.Biochim. Biophys. Acta 300:421–465

    Google Scholar 

  25. Poste, G., Nicolson, G.L. (editors) 1978. Membrane Fusion. Elsevier, Amsterdam

    Google Scholar 

  26. Rasmussen, H. 1970. Cell communication, calcium ion, and cyclic adenosine monophosphate.Science 170:404–412

    Google Scholar 

  27. Sowers, A.E. (editor) 1987. Membrane Fusion. Plenum, New York

    Google Scholar 

  28. Struck, D.K., Hoekstra, D., Pagano, R.E. 1981. Use of resonance energy transfer to monitor membrane fusion.Biochemistry 20:4093–4099

    Google Scholar 

  29. Waggoner, A.S., Stryer, L. 1970. Fluorescent probes of biological membranes.Proc. Natl. Acad. Sci. USA 67:579–589

    Google Scholar 

  30. Weast, R.C. (editor). 1968. Handbook of Chemistry and Physics. The Chemical Rubber Co., Cleveland (OH)

    Google Scholar 

  31. Wilshut, J., Papahadjopoulos, D. 1979. Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents.Nature (London) 281:690–692

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohki, S., Arnold, K. Surface dielectric constant, surface hydrophobicity and membrane fusion. J. Membrain Biol. 114, 195–203 (1990). https://doi.org/10.1007/BF01869214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869214

Key Words

Navigation