Skip to main content
Log in

An operational approach to quantum probability

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In order to provide a mathmatical framework for the process of making repeated measurements on continuous observables in a statistical system we make a mathematical definition of an instrument, a concept which generalises that of an observable and that of an operation. It is then possible to develop such notions as joint and conditional probabilities without any of the commutation conditions needed in the approach via observables. One of the crucial notions is that of repeatability which we show is implicitly assumed in most of the axiomatic treatments of quantum mechanics, but whose abandonment leads to a much more flexible approach to measurement theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kolmogorov, A. N.: Foundations of probability theory. Trans. by N. Morrison. New York: Chelsea Publ. Comp. 1950.

    Google Scholar 

  2. Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: W. A. Benjamin Inc. 1963.

    Google Scholar 

  3. Urbanik, K.: Joint probability distribution of observables in quantum mechanics. Studia Math.21, 117–133 (1961).

    Google Scholar 

  4. Varadarajan, V. S.: Probability in physics and a theorem on simultaneous observability. Commun. Pure Appl. Math.15, 189–217 (1962).

    Google Scholar 

  5. Umegaki, H.: Conditional expectation in an operator algebra. Tohôku Math. J.6, 177–181 (1954).

    Google Scholar 

  6. Nakamura, M., Turumaru, T.: Expectations in an operator algebra. Tohôku Math. J.6, 182–188 (1954).

    Google Scholar 

  7. von Neumann, J.: Mathematical foundations of quantum mechanics. Trans. by R. T. Beyer. Princeton: Unive. Press 1955.

    Google Scholar 

  8. Schwinger, J.: The algebra of microscopic measurement. Proc. Nat. Acad. Sci. U.S.45, 1542–1554 (1959) and46, 257–265 (1960) and46, 570–579 (1960).

    Google Scholar 

  9. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964).

    Google Scholar 

  10. Luders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Physik (6)8, 322–328 (1951).

    Google Scholar 

  11. Goldberger, M. L., Watson, K. M.: Measurement of time correlations for quantum-mechanical systems. Phys. Rev. (2)134, B919–928 (1964).

    Google Scholar 

  12. Furry, W. H.: Some aspects of the quantum theory of measurement pp. 1–64. Lectures in Theoretical Physics vol. VIIIa. Boulder: University of Colorado Press 1966

    Google Scholar 

  13. Nakamura, M. Umegaki, H.: On von Neumann's theory of measurement in quantum statistics. Math. Japon7, 151–157 (1962).

    Google Scholar 

  14. Davies, E. B.: On the repeated measurement of continuous observables in quantum mechanics. J. Funct. Anal. (to appear).

  15. —— Quantum stochastic processes. Commun. Math. Phys.15, 277–304 (1969).

    Google Scholar 

  16. Schatten, R.: Norm ideals of completely continuous operators. Erg. der Math. Berlin-Göttingen-Heidelberg: Springer: 1960.

    Google Scholar 

  17. Ellis, A. J.: The duality of partially ordered normed linear spaces. J. London Math. Soc.39, 730–744 (1964).

    Google Scholar 

  18. Namioka, I.: Partially ordered linear topological spaces. Mem. Am. Math. Soc.24 (1957).

  19. Mackey, G. W.: Borel structure in groups and their duals. Trans. Am. Math. Soc.85, 134–165 (1957).

    Google Scholar 

  20. Moy, S.-T. C.: Characterisations of conditional expectations as a transformation on function spaces. Pacific J. Math.4, 47–64 (1954).

    Google Scholar 

  21. Dixmier, J.: Les algèbres d'operateurs dans l'espace hilbertien (algebres de von Neumann). Cahiers scientifiques 25. 2nd ed. Paris: Gauthiers-Villars 1969.

    Google Scholar 

  22. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math.37, 823–843 (1936).

    Google Scholar 

  23. von Neumann, J.: Collected works, Vol. IV. No. 17. Edited by A. H. Taub. Oxford: Pergamon Press 1962.

    Google Scholar 

  24. Pool, J. C. T.: Baer*-semigroups and the logic of quantum mechanics. Commun. Math. Phys.9, 118–141 (1968).

    Google Scholar 

  25. Kakutani, S.: Concrete representation of abstract (M)-spaces. Ann. Math.42, 994–1024 (1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

At present on leave from the University of Oxford, Research supported by N.S.F. grant GP-7952X and A.F.O.S.R. contract no. F 44620-67-C-0029.

At present on leave from Brasenose College, Oxford. Research supported by A.F.O.S.R. grant AF-AFOFR-69-1712.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, E.B., Lewis, J.T. An operational approach to quantum probability. Commun.Math. Phys. 17, 239–260 (1970). https://doi.org/10.1007/BF01647093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01647093

Keywords

Navigation