Skip to main content
Log in

Algebraic aspects of crystallography

II. Non-primitive translations in space groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Taking into account the fact that space groups are groups of transformations of Euclideann-dimensional space, non-equivalent systems of non-primitive translations are defined. They can be brought into one-to-one correspondence with the elements of the groupH 1 (K, R n/Zn) or with those of the groupH 1 (K, Z n/kZn)/H 1 (K, Z n). (K is a point group of orderk.) The consistency of these findings with the results of Part I is given by the isomorphisms

$$H^2 (K,Z^n ) \cong H^1 (K,R^n /Z^n ) \cong H^1 (K,Z^n /kZ^n )/H^1 (K,Z^n ).$$

Theorems are proved giving the conditions for cohomology groupsH q (K, A) to be zero. These conditions are fulfilled in particular ifA=R n andK is a subgroup ofGL (n, R) that either is compact (thenq>0) or has a finite normal subgroup leaving no element ofR n invariant (thenq≧0). This implies that the affine, the Euclidean and the inhomogeneous Lorentz groups are the only extensions ofR n by the corresponding homogeneous groups. By way of illustration, the theory of this paper is applied to two 2-dimensional space groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, E., andA. Janner: Helv. Phys. Acta38, 551 (1965).

    Google Scholar 

  2. Janner, A.: Helv. Phys. Acta39, 665 (1966).

    Google Scholar 

  3. Seitz, F.: Z. Krist.88, 433 (1934);90, 289 (1935);91, 336 (1935);94, 100 (1936).

    Google Scholar 

  4. Burckhardt, J. J.: Arch. History Exact. Sci.4, 235 (1967).

    Google Scholar 

  5. Niggli, P.: Geometrische Kristallographie des Diskontinuums. Leipzig: Bornträger 1919.

    Google Scholar 

  6. Speiser, A.: Die Theorie der Gruppen endlicher Ordnung. Basel: Birkhäuser 1956.

    Google Scholar 

  7. Schur, I.: Sitzber. Preuss. Akad. Wiss., Phys.-Math. Kl,1905, 406.

  8. Maclane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  9. Eilenberg, S., andS. MacLane: Ann. Math.48, 51 (1947);48, 326 (1947).

    Google Scholar 

  10. Hall, M.: The theory of groups. New York: MacMillan 1959.

    Google Scholar 

  11. Frobenius, G.: Sitzber. Preuss. Akad. Wiss. Phys.-Math. Kl.1911, 654

  12. Burckhardt, J. J.: Die Bewegungsgruppen der Kristallographie. Basel: Birkhäuser 1947.

    Google Scholar 

  13. Zassenhaus, H.: Commun. Math. Helv.21, 117 (1948).

    Google Scholar 

  14. Maschke, H.: Math. Ann.52, 363 (1899).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascher, E., Janner, A. Algebraic aspects of crystallography. Commun.Math. Phys. 11, 138–167 (1968). https://doi.org/10.1007/BF01645902

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645902

Keywords

Navigation