Skip to main content
Log in

Transforming growth factor β gene maps to human chromosome 19 long arm and to mouse chromosome 7

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Transforming growth factors (TGF) are defined as biologically active polypeptides which reversibly confer the transformed phenotype onto untransformed cultured cells. They have been subdivided into two classes: type α and type β TGFs. TGF-β acts synergistically with TGF-α in inducing phenotypic transformation. TGF-β can also act as negative autocrine growth factor. A human 1050-bp EcoRI cDNA fragment was used to map the human locus for TGF-β by Southern blotting of DNA prepared from 17 human × Chinese hamster somatic cell hybrids. The humanspecific restriction fragments segregated with human chromosome 19 in all of 14 informative hybrids. All other human chromosomes were discordant with the TGF-β bands in at least four hybrids. After in situ hybridization of the tritiated TGF-β probe to normal human metaphase spreads, 151 silver grains were scored in 54 cells. Of 24 grains over chromosome 19, 16 grains (11%) lay over region 19q13.1 → q13.3. Of the 54 cells analyzed, 16 (30%) had label over region 19q13.1 → q13.3. Thus,TGFB is assigned to chromosome 19, subbands q13.1 → q13.3. TheTgf- β locus in the mouse was mapped to chromosome 7 by hybridizing a murine cDNA probe to a Chinese hamster × mouse hybrid panel. Human chromosome 19 and proximal mouse chromosome 7 share another four homologous loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Roberts, A.B., Lamb, L.C., Newton, D.L., Sporn, M.B., De Larco, J.E., and Todaro, G.J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:3494–3498.

    PubMed  Google Scholar 

  2. Todaro, G.J., Fryling, D., and De Larco, J.E. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:5258–5262.

    PubMed  Google Scholar 

  3. Marquardt, H., and Todaro, G.J. (1982).J. Biol. Chem. 257:5220–5225.

    PubMed  Google Scholar 

  4. Marquardt, H., Hunkapiller, M.W., Hood, L.E., and Todaro, G.J. (1984).Science 223:1079–1082.

    PubMed  Google Scholar 

  5. Derynck, R., Roberts, A.B., Winkler, M.E., Chen, E.Y., and Goeddel, D.V. (1984).Cell 38:287–297.

    PubMed  Google Scholar 

  6. Massague, J. (1983).J. Biol. Chem. 258:13614–13620.

    PubMed  Google Scholar 

  7. Assoian, R.K., Komoriya, A., Meyers, C.A., Miller, D.M., and Sporn M.B. (1983).J. Biol. Chem. 258:7155–7160.

    PubMed  Google Scholar 

  8. Derynck, R., Jarrett, J.A., Chen, E.Y., Eaton, D.H., Bell, J.R., Assoian, E.K., Roberts, A.B., Sporn, M.B., and Goeddel, D.V. (1985).Nature 316:701–705.

    PubMed  Google Scholar 

  9. Frolik, C.A., Wakefield, L.M., Smith, D.M., and Sporn, M.B. (1984).J. Biol. Chem. 259:10995–11000.

    PubMed  Google Scholar 

  10. Tucker, R.F., Branum, E.L., Shipley, G.D., Ryan, R.J., and Moses, H.L. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:6757–6761.

    PubMed  Google Scholar 

  11. Massague, J., and Like, B. (1985).J. Biol. Chem. 260:2636–2645.

    PubMed  Google Scholar 

  12. Brissenden, J.E., Derynck, R., and Francke, U. (1985).Cancer Res. 45:5593–5597.

    PubMed  Google Scholar 

  13. Frolik, C.A., Dart, L.L., Meyers, C.A., Smith, D.M., and Sporn, M.B. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:3676–3680.

    PubMed  Google Scholar 

  14. Roberts, A.E., Anzano, M.A., Meyers, C.A., Wideman, J., Blacher, R., Pan, Y.E., Stein, S., Lehrman, S.R., Smith, J.M., Lamb, L.C., and Sporn, M.B. (1983).Biochemistry 22:5692–5698.

    PubMed  Google Scholar 

  15. Anzano, M.A., Roberts, A.D., Smith, J.M., Sporn, M.B., and De Larco, J.E. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:6264–6268.

    PubMed  Google Scholar 

  16. Assoian, R.K., Frolik, C.A., Roberts, A.B., Miller, D.M., and Sporn, M.B. (1984).Cell 36:35–41.

    PubMed  Google Scholar 

  17. Tucker, R.F., Bolkenant, M.E., Branum, E.L., and Moses, H.L. (1983).Cancer Res. 43:1581–1586.

    PubMed  Google Scholar 

  18. Tucker, R.F., Shipley, G.D., Moses, H.L., and Holley, R.W. (1984).Science 226:705–707.

    PubMed  Google Scholar 

  19. Roberts, A.B., Anzano, M.A., Wakefield, L.M., Roche, N.S., Stern, D.F., and Sporn, M.B. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:119–123.

    PubMed  Google Scholar 

  20. Derynck, R., Jarrett, J., Chen, E.Y., and Goeddel, D.V., (1986).J. Biol. Chem. 261:4377–4379.

    PubMed  Google Scholar 

  21. Reinberg, A.R., and Vogelstein, B. (1983).Anal. Biochem. 132:6–13.

    PubMed  Google Scholar 

  22. Francke, U., Busby, N., Shaw, D., Hansen, S., and Brown, M.G. (1976).Somat. Cell Genet. 2:27–40.

    PubMed  Google Scholar 

  23. Francke, U., and Pellegrino, M.A. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:1147–1151.

    PubMed  Google Scholar 

  24. Francke, U., and Francke, B. (1981).Somat. Cell Genet. 7:171–191.

    PubMed  Google Scholar 

  25. Francke, U. (1984).Cytogenet. Cell Genet. 38:298–307.

    PubMed  Google Scholar 

  26. Southern, E. (1975).J. Mol. Biol. 98:503–507.

    PubMed  Google Scholar 

  27. Meera Khan P. (1971).Arch. Biochem. Biophys. 145:470–483.

    PubMed  Google Scholar 

  28. van Someren, H., van Henegouwen, H.B., Los, E., Wurzer-Figurelli, E., Doppert, B., Vervloet, M., and Meera Khan P. (1974).Humangenetik 25:189–191.

    PubMed  Google Scholar 

  29. Kirsch, I.R., Morton, C.C., Nakahara, K., and Leder, P. (1982).Science 216:301–303.

    PubMed  Google Scholar 

  30. Harper, M.E., and Saunders, G.F. (1981).Chromosoma 83:431–439.

    PubMed  Google Scholar 

  31. Francke, U., and Taggart, R.T. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:5230–5233.

    PubMed  Google Scholar 

  32. Francke, U., Lalley, P.A., Moss, W., Ivy, L., and Minna, J.D. (1977).Cytogenet. Cell Genet. 19:57–84.

    PubMed  Google Scholar 

  33. Naylor, S., Lalouel J.-M., and Shaw D.J. (1985).Cytogenet. Cell Genet. 40:242–267.

    PubMed  Google Scholar 

  34. Ueshima, Y., Bird, M.L., Vardiman, J.W., and Rowley, J.D. (1985).Int. J. Cancer 36:287–290.

    PubMed  Google Scholar 

  35. Bloomfield, C.D., Arthur, D.C., Frizzera, G. Levine, E.G., Peterson, B.A., and Gajl-Peczalska, K.J. (1983).Cancer Res. 43:2975–2984.

    PubMed  Google Scholar 

  36. Croce, C.M., Shander, M., Martinis, J., Cicurel, L., D'Anconna, G.G., Dolby, T.W., and Koprowski, H. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:3416–3419.

    PubMed  Google Scholar 

  37. Erikson, J., Finan, J., Nowell, P.C., and Croce, C.M. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:5611–5615.

    PubMed  Google Scholar 

  38. Dalla-Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R.C., and Croce, C.M. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:7824–7827.

    PubMed  Google Scholar 

  39. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., and Croce, C.M. (1985).Science 229:1390–1393.

    PubMed  Google Scholar 

  40. Yoshida M.C., Sasaki M., Semba K., Yamanashi Y., Nishizawa M., Sukegawa J., Yamamoto T., Toyoshima K. (1985).Cytogenet. Cell Genet. 40:786 (abstr.).

    Google Scholar 

  41. Hayday, A.C., Gillies, S.D., Saito, H., Wood, C., Wiman, K., Hayward, W.S., and Tonegawa, S. (1984).Nature 307:334–340.

    PubMed  Google Scholar 

  42. Lalley, P.A., and McKusick, V.A. (1985). Human Gene Mapping 8.Cytogenet. Cell Genet. 40:536–566.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, D., Brissenden, J.E., Derynck, R. et al. Transforming growth factor β gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet 12, 281–288 (1986). https://doi.org/10.1007/BF01570787

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570787

Keywords

Navigation