Skip to main content
Log in

Spatial structure of immunoglobulin molecules

Die räumliche Struktur der Immunglobulin-Moleküle

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Immunglobulin Moleküle der Klasse G (Antikörper-Moleküle) bestehen aus zwei schweren Ketten (50 000 dalton Molekulargewicht) und zwei leichten Ketten (25 000 dalton Molekulargewicht). Ihre Gestalt ist Y-förmig, wobei die Arme von je einer leichten Kette und der N-terminalen Hälfte einer schweren Kette in enger Assoziation gebildet werden. Der Stamm wird von den C-terminalen Hälften der schweren Ketten aufgebaut.

Die schweren und die leichten Ketten sind in globuläre Domänen mit einem Molekulargewicht von 12 000 dalton gefaltet. Die schweren Ketten bestehen aus vier, die leichten Ketten aus zwei Domänen. Diiese Domänen zeigen eine ähnliche Grundstruktur aus zwei β-Faltblättern, aber erhebliche Unterschiede im Detail.

Die N-terminalen, variablen Domänen der schweren und leichten Ketten, spezifisch die hypervariablen Polypeptidesegmente der Domänen, die an den Spitzen des Y liegen, bauen die Antigen- und Hapten-Bindungsstelle auf. Die Art der Aminosäuren in den hypervariablen Schleifen bestimmt die Form und die Spezifität des Antikörpers. Alle Domänen mit Ausnahme der CH2 Domäne der schweren Kette aggregieren eng lateral. Die CH2 Domäne hat Kohlehydrat gebunden, das die laterale Assoziation verhindert.

Longitudinale Wechselwirkungen zwischen den Domänen sind locker und erlauben Flexibilität in der relativen Anordnung der Domänen. Diese Flexibilität ist wahrscheinlich für die Funktion der Antikörper von Bedeutung.

Arm (Fab) und Stamm (Fc) Teile sind durch ein Scharnierpeptide verbunden, das zwei parallelen Polyproline Helizes enthält.

Antigenbindung initialisiert die Effektorfunktionen der Antikörper. Antigen bindet an die Spitzen des Y-förmigen Moleküls, die Effektorfunktionen sind im Stammteil lokalisiert. Es ist eine offene Frage, ob Konformationsänderungen im Antikörpermolekül bei der Initialisierung eine Rolle spielen.

Summary

Immunoglobulin molecules of the class G (antibody molecules) consist of two heavy chains (50,000 dalton molecular weight) and two light chains (25,000 dalton). The overall shape is a Y with the arms formed by the light chains and the N-terminal half of the heavy chains in tight association. The stem is formed by the C-terminal halfs of the heavy chains.

The heavy and the light chains fold into globular domains of molecular weights of 12,000 dalton. There are four domains of the heavy chain and two of the light chain. All these domains show a similar fold, consisting of two β-sheets but display considerable differences in detail.

The N-terminal variable domains of heavy and light chains and specifically the hypervariable polypeptide segments of the domains, located at the tips of the Y, constitute the antigen and hapten binding site. The nature of the amino acid residues of the hypervariable loops determines the shape and the specificity of the antibody.

All domains pair tightly laterally, except the CH2 domains of the heavy chain. This domain has carbohydrate bound which prevents lateral association.

Longitudinal interaction between the domains is loose and allows flexibility in the arrangement. Flexibility is probably of significance for antibody function.

Arm (Fab) and stem (Fc) parts are linked by the hinge peptide which contains a segment with a unique conformation of two parallel poly-proline helices.

Antigen binding triggers effector functions of antibodies. Antigen binding is at the tips of the Y-shaped antibody, but effector functions are displayed by the stem part. It is an open question whether conformational changes of the antibody molecule play a significant role in the trigger mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mueller-Eberhard HJ (1975) Complement. Ann Rev Biochem 44:697–724

    Google Scholar 

  2. Porter RR, Reid KBM (1979) Activation of the complement system by antibody-antigen complexes: The classical pathway. Adv Prot Chem 33:1–71

    Google Scholar 

  3. Warr GW (1980) Membrane immunoglobulins of vertebrate lymphocytes. Cont Top Immunobiol 9:141–162

    Google Scholar 

  4. Marchalonis JJ (1976) Surface immunoglobulins of B and T lymphocytes: Molecular properties, association with the cell membrane, and a unified model of antigen recognition. Cont Top Mol Immunol 5:125–160

    Google Scholar 

  5. Loor F, Roelants GE (eds) (1977) B and T Cells in immune recognition. J Wiley & Sons, London New York Sydney Toronto

    Google Scholar 

  6. Edelman GM (1970) The structure and function of antibodies. Sci Am Aug: 34–42

  7. Porter RR (1967) The Structure of Antibodies. Sci Am Oct:81–87

  8. Hilschmann N (1969) Die molekularen Grundlagen der Antikoerperbildung. Naturwissenschaften 56:195–205

    Google Scholar 

  9. Jaton J-C, Huser H, Braun DG, Givol D, Pecht J, Schlessinger JC (1975) Conformational changes induced in a homogenous anti-Type III pneumococcal antibody by oligosaccharides of increasing size. Biochem 14:5312–5315

    Google Scholar 

  10. Braun DG, Huser H (1977) Rabbit anti-polysaccharide Antibodies: structure and genetics. In: Mandel TE, Cheers CH, Hosking CS, McKenzie IFC, Nossal GJV (eds) Progress in immunology III. North Holland Publ Comp, Amsterdam New York Oxford, pp 255–264

    Google Scholar 

  11. Koehler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Google Scholar 

  12. Melchers F, Potter BM, Bethesda NW (eds) (1978) Lymphocyte hybridomas. Curr Top Microbiol Immunol 81:

  13. Nisonoff A, Hopper JE, Spring SB (1975) The antibody molecule. Academic Press New York San Francisco London (1975)

    Google Scholar 

  14. Edmundson AB, Ely KR, Abola EE (1978) Conformational flexibility in immunoglobulins. Cont Top in Mol Immunol 7:95–118

    Google Scholar 

  15. Amzel LM, Poljak RJ (1979) Three-dimensional structure of Immunoglobulins. Ann Rev Biochem 48:961–997

    Google Scholar 

  16. Tonegawa S, Maxam AM, Tizard R, Bernard O, Gilbert W (1978) Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Nat Acad Sci USA 75:1485–1489

    Google Scholar 

  17. Nishioka Y, Leder P (1980) Organization and complete sequence of identical embryonic and plasmacytoma K V-region genes. J Biol Chem 255:3691–3694

    Google Scholar 

  18. Epp O, Colman P, Fehlhammer H, Bode W, Schiffer M, Huber R, Palm W (1974) Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein Rei. Eur J Biochem 45:513–524

    Google Scholar 

  19. Fehlhammer H, Schiffer M, Epp O, Colman PM, Lattman EE, Schwager P, Steigemann W, Schramm HJ (1975) The structure determination of the variable portion of the Bence-Jones Protein Au. Biophys Struct Mechanism 1:139–146

    Google Scholar 

  20. Epp O, Lattman EE, Schiffer M, Huber R, Palm W (1975) The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein Rei. Biochem 14:4943–4952

    Google Scholar 

  21. Colman PM, Deisenhofer J, Huber R, Palm W (1976) Structure of the human antibody molecule Kol (Immunglobulin G1): An electron density map at 5 A Resolution. J Mol Biol 100:257–282

    Google Scholar 

  22. Deisenhofer J, Colman PM, Epp O, Huber R (1976) Crystallographic structural studies of a human Fc fragment. II. A complete model based on a fourier map at 3.5 A resolution. Hoppe-Seyler's Z Physiol Chem 357:1421–1434

    Google Scholar 

  23. Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W (1976) Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 264:415–420

    Google Scholar 

  24. Matsushima M, Marquart M, Jones TA, Colman PM, Bartels K, Huber R, Palm W (1978) Crystal structure of the human Fab fragment Kol and its comparison with the intact Kol molecule. J Mol Biol 121:441–459

    Google Scholar 

  25. Deisenhofer J, Jones TA, Huber R, Sjoedahl J, Sjoequist J, (1978) Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from staphylococcus aureus. Z Physiol Chem 359:975–985

    Google Scholar 

  26. Marquart M, Deisenhofer J, Huber R, Palm W (1980) Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its Fab fragment at 3.0 and 1.9 A resolution. J Mol Biol 141:369–392

    Google Scholar 

  27. Edmundson AB, Ely KR, Abola RR, Schiffer M, Panagiotopoulos N (1975) Rotational Allomerism and Divergent Evolution of Domains in Immunoglobulin light Chains. Biochemistry 14:3953–3961

    Google Scholar 

  28. Melchers F (1973) Biosynthesis, intracellular transport, and secretion of immunoglobulins. Effect of 2-deoxy-D-glucose in tumor plasma cells producing and secreting immunoglobulin G1. Biochem 12:1471–1476

    Google Scholar 

  29. Weitzman S, Scharft MD (1976) Mouse myeloma mutants blocked in the assembly, glycosylation and secretion of immunoglobulin. J Mol Biol 102:237–252

    Google Scholar 

  30. Hickman S, Kulczycki A Jr, Lynch RG, Kornfeld S (1977) Studies of the mechanism of tunicamycin inhibition of IgA and IgE secretion by plasma cells. J Biol Chem 252:4402–4408

    Google Scholar 

  31. Segal DM, Padlan EA, Cohen GH, Rudikoff S, Potter M, Davies DR (1974) The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Nat Acad Sci USA 71:4298–4302

    Google Scholar 

  32. Abola EE, Ely KR, Edmundson AB (1980) Marked structural differences of the Mcg Bence-Jones dimer in two crystal systems. Biochem 19:432–439

    Google Scholar 

  33. Michaelson TE, Frangione B, Franklin EC (1977) Primary structure of the “Hinge” region of human IgG3. J Biol Chem 252:883–889

    Google Scholar 

  34. Ely KR, Colman PM, Abola EE, Hess AC, Peabody DS, Parr DM, Connell GE, Laschinger CA, Edmundson AB (1978) Mobile Fc region in the Zie IgGz cryoglobulin: Comparison of crystals of the F(ab') fragment and the intact immunoglobulin. Biochemistry 17:820–823

    Google Scholar 

  35. Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Nat Acad Sci USA 74:5140–5144

    Google Scholar 

  36. Wu TT, Kabat EA (1970) An Analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250

    Google Scholar 

  37. Connell GE, Porter RR (1971) A new enzymic fragment (Facb) of rabbit immunoglobulin G Biochem J 124:53 P

    Google Scholar 

  38. Yasmeen D, Ellerson JR, Dorrington KJ, Painter RH (1976) The structure and function of immunoglobulin domains. IV. The distribution of some effector functions among the C2 and C3 homology regions of human immunoglobulin G1

  39. Metzger H (1978) The effect of antigen on antibodies: recent studies. Cont Top in Mol Immunol 7:119–148

    Google Scholar 

  40. Saul FA, Amzel LM, Poljak RJ (1978) Preliminary Refinement and structural analysis of the Fab fragment from human immunoglobulin New at 2.0 A Resolution. J Biol Chem 253:585–597

    Google Scholar 

  41. Ely KR, Firca JR, Williams KJ, Abola EE, Fenton JM, Schiffer M, Panagiotopoulos NC, Edmundson AB (1978) Crystal properties as indicators of conformational changes during ligand binding or interconversion of Mcg light chain isomers. Biochemistry 17:158–167

    Google Scholar 

  42. Zidovetski R, Licht A, Pecht I (1979) Effect of interchain disulfide bond on hapten binding properties of light chain dimer of protein 315. Proc Nat Acad Sci USA 76:5848–5852

    Google Scholar 

  43. Huber R (1979) Conformational flexibility and its functional significance in some protein molecules. Trends in Biochem Sciences 4/12:271–276

    Google Scholar 

  44. Huber R, Bode W (1978) Structural Basis of the activation and action of trypsin. Acc of Chem Res 11:114–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, R. Spatial structure of immunoglobulin molecules. Klin Wochenschr 58, 1217–1231 (1980). https://doi.org/10.1007/BF01478928

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01478928

Schlüsselwörter

Key words

Navigation