Skip to main content
Log in

Aspects of regulation of ribosomal protein synthesis inXenopus laevis

Review

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The work carried out in the authors' laboratories on the structure and expression of ribosomal protein genes inXenopus is reviewed, with some comparisons with other systems. These genes form a class that shares several structural features, especially in the region surrounding the 5′ ends. These similar structures appear to be involved in coregulated expression that is attained at various regulatory levels: transcriptional, transcript processing and stability, and translational. Particular attention is paid here to the one operating at the translational level, which has been studied duringXenopus oogenesis and embryogenesis, and also during nutritional changes ofXenopus cultured cells. This regulation, which responds to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA engaged on polysomes, leaving each translated rp-mRNA molecule always fully loaded with ribosomes. Responsible for this translational behaviour is the typical 5′UTR, which characterizes all rp-mRNAs analyzed up to now, and that can bindin vitro some proteins, putative trans-acting factors for this translational regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amaldi, F., I. Bozzoni, E. Beccari & P. Pierandrei-Amaldi, 1989. Expression of ribosomal protein genes and regulation of ribosome biosynthesis inXenopus development. Trends Biochem. Sci. 14: 175–178.

    PubMed  Google Scholar 

  • Amaldi, F. & Pierandrei-Amaldi, 1990. Translational regulation of the expression of ribosomal protein genes inXenopus laevis. Enzyme 44: 93–105.

    PubMed  Google Scholar 

  • Bagni, C., P. Mariottini, F. Annesi & F. Amaldi, 1990. Structure ofXenopus laevis ribosomal protein L32 and its expression during development. Nucl. Acids Res. 18: 4423–4426.

    PubMed  Google Scholar 

  • Bagni, C., P. Mariottini, L. Terrenato & F. Amaldi, 1992. Individual variability in the translational regulation of ribosomal protein synthesis inXenopus. Mol. Gen. Genet. 234: 60–64.

    PubMed  Google Scholar 

  • Baum, E.Z., L.E. Hyman & W.M. Wormington, 1988. Post-translational control of ribosomal protein L1 accumulation inXenopus oocytes. Dev. Biol. 126: 141–146.

    PubMed  Google Scholar 

  • Baum, E.Z. & W.M. Wormington, 1985. Cooroinate expression of r-protein genes duringXenopus development. Dev. Biol. 1111: 488–498.

    Google Scholar 

  • Beccari, E. & P. Mazzetti, 1987. The nucleotide sequence of the ribosomal protein L14 gene ofXenopus laevis. Nucl. Acids Res. 15: 1870–1872.

    PubMed  Google Scholar 

  • Beccari, E., P. Mazzetti, A.M. Mileo, I. Bozzoni, P. Pierandrei-Amaldi & F. Amaldi, 1986. Sequences coding for the ribosomal protein L14 inXenopus laevis andXenopus tropicalis: homologies in the 5′ non translated region are shared with other r-protein mRNAs. Nucl. Acids Res. 14: 7633–7646.

    PubMed  Google Scholar 

  • Bisbee, C.A., M.A. Baker, A.C. Wilson, I. Hadji-Azimi & M. Fishberg, 1977. Albumin phylogeny for clawed frogs (Xenopus). Science 195: 785–787.

    PubMed  Google Scholar 

  • Bowman, L.H., 1987. The synthesis of ribosomal proteins S16 and L32 is not autogenously regulated during mouse myoblast differentiation. Mol Cell Biol 7: 4464–4471.

    PubMed  Google Scholar 

  • Bozzoni, I., P. Fragapane, F. Annesi, P. Pierandrei-Amaldi, F. Amaldi & E. Beccari, 1984. Expression of twoXenopus laevis ribosomal protein genes in injected frog oocytes. A specific splicing block interferes with the L1 RNA maturation. J. Mol. Biol. 180: 987–1005.

    PubMed  Google Scholar 

  • Brown, D.D. & I.B. Dawid, 1968. Specific gene amplification in oocytes. Science 160: 272–280.

    PubMed  Google Scholar 

  • Brown, D.D. & J.B. Gurdon, 1964. Absence of rRNA synthesis in the anucleolate mutant ofXenopus laevis. Proc. Natl. Acad. Sci. USA 51: 139–146.

    PubMed  Google Scholar 

  • Caffarelli, E., P. Fragapane, C. Gehring & I. Bozzoni, 1987. The accumulation of mature RNA for theXenopus laevis ribosomal protein L1 is controlled at the level of splicing and turnover of the precursor RNA. EMBO J. 6: 3493–3498.

    PubMed  Google Scholar 

  • Caizergues-Ferrer, M., P. Mariottini, C. Curie, B. Lapeyre, N. Gas, F. Amalric & F. Amaldi, 1989. Nucleolin fromXenopus laevis: cDNA cloning and expression during development. Genes Dev. 3: 324–333.

    PubMed  Google Scholar 

  • Cardinali, B., N. Campioni & P. Pierandrei-Amaldi, 1987. Ribosomal protein, histone and calmodulin mRNAs are differently regulated at the translational level during oogenesis ofXenopus laevis. Exp. Cell Res. 169: 432–441.

    PubMed  Google Scholar 

  • Cardinali, B., M. Di Cristina & P. Pierandrei-Amaldi, 1993. Interaction of proteins with the mRNA for ribosomal protein L1 inXenopus: structural characterization ofin vivo complexes and identification of proteins that bindin vitro to its 5′UTR. Nucl. Acids Res. 21: 2301–2308.

    PubMed  Google Scholar 

  • Carnevali, F., C. La Porta, V. Ilardi & E. Beccari, 1989. Nuclear factors specifically bind to upstream sequences of aXenopus laevis ribosomal protein gene promoter. Nucl. Acids Res. 17: 8171–8184.

    PubMed  Google Scholar 

  • Cecconi, F., P. Mariottini, F. Loreni, P. Pierandrei-Amaldi, N. Campioni & F. Amaldi, 1994. U17XS8, a small nucleolar RNA with a 12 nt complementarity to 18S rRNA and coded by a sequence repeated in the six introns ofXenopus laevis ribosomal protein S8 gene. Nucl. Acids Res. in press.

  • Chen, Q.-M., P. Mariottini, C. Bagni & F. Amaldi, 1992. The pyrimidine sequence encompassing the transcription start point ofXenopus laevis ribosomal-protein-encoding genes it not obligatory for activity in oocytes. Gene 119: 283–286.

    PubMed  Google Scholar 

  • Cutruzzolà, F., F. Loreni & I. Bozzoni, 1986. Complementarity of conserved sequence elements present in 28S ribosomal RNA and in ribosomal protein genes ofXenopus laevis andXenopus tropicalis. Gene 49: 371–376.

    PubMed  Google Scholar 

  • Davidson, E.H., 1986. Gene activity in early development, Academic Press, Orlando.

    Google Scholar 

  • Di Cristina, M., R. Menard & P. Pierandrei-Amaldi, 1991.Xenopus laevis ribosomal protein Sla cDNA sequence. Nucl. Acids Res. 19: 1943.

    PubMed  Google Scholar 

  • Elsdale, T.R., M. Fischberg & S. Smith, 1958. A mutation that reduces nucleolar number inXenopus laevis. Exp. Cell Res. 14: 642–643.

    PubMed  Google Scholar 

  • Fragapane, P., E. Caffarelli, M. Lener, S. Prislei, B. Santoro & I. Bozzoni, 1992. Identification of the sequences responsible for the splicing phenotype of the regulatory intron of the L1 ribosomal protein gene ofXenopus laevis. Mol. Cell. Biol. 12: 1117–1125.

    PubMed  Google Scholar 

  • Fragapane, P., S. Prislei, A. Michienzi, E. Caffarelli & I. Bozzoni, 1993. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J. 12: 2921–2928.

    PubMed  Google Scholar 

  • Gall, J.G., 1968. Differential synthesis of the genes for ribosomal RNA during amphibian oogenesis. Proc. Natl. Acad. Sci. USA 60: 553–560.

    PubMed  Google Scholar 

  • Geyer, P.K., O. Meyuhas, R.P. Perry & L.F. Johnson, 1982. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol. Cell. Biol. 2: 685–693.

    PubMed  Google Scholar 

  • Hammond, M.L., W. Merrick & L.H. Bowman, 1991. Sequences mediating the translation of mouse S16 ribosomal protein mRNA during myoblast differentiation andin vitro and possible control points for thein vitro translation. Genes Dev. 5: 1723–1736.

    PubMed  Google Scholar 

  • Hariharan, M., D. Kelley & R.P. Perry, 1989. Equipotent mouse ribosomal protein promoters have a similar architecture that includes internal sequence elements. Genes Dev. 3: 1789–1800.

    PubMed  Google Scholar 

  • Hariharan, M.D. & R.P. Perry, 1990. Functional dissection of a mouse ribosomal protein promoter: significance of the polypyrimidine initiator and an element in the TATA-box region. Proc. Natl. Acad. Sci. USA 87: 1526–1530.

    PubMed  Google Scholar 

  • Hyman, L.E. & W.M. Wormington, 1988. Translational inactivation of ribosomal protein mRNAs duringXenopus oocyte maturation. Genes Dev. 2: 598–605.

    PubMed  Google Scholar 

  • Kaspar, R.L., K. Tomohito, H. Cranston, D.R. Morris & M.W. White, 1992. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J. Biol. Chem. 267: 508–514.

    PubMed  Google Scholar 

  • Kiss, T. & W. Filipowicz, 1993. Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCCI. EMBO J. 12: 2913–2920.

    PubMed  Google Scholar 

  • Leverette, R.D., M.T. Andrews & E.S. Maxwell, 1992. Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA. Cell 71: 1215–1221.

    PubMed  Google Scholar 

  • Levy, S., D. Avni, M. Hariharan, R.P. Perry & O. Meyuhas, 1991. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88: 3319–3323.

    PubMed  Google Scholar 

  • Liu, J. & E.S. Maxwell, 1990. Mouse U14 snRNA is encoded in an intron of the mouse cognate hsc70 heat shock gene. Nucl. Acids Res. 18: 6565–6571.

    PubMed  Google Scholar 

  • Lodish, H.F., 1974. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251: 385–388.

    PubMed  Google Scholar 

  • Loreni, F. & F. Amaldi, 1992. Translational regulation of ribosomal protein synthesis inXenopus cultured cells: mRNA relocation between polysomes and RNP during nutritional shifts. Eur. J. Biochem. 105: 1027–1032.

    Google Scholar 

  • Loreni, F., A. Francesconi & F. Amaldi, 1993. Coordinate translational regulation in the syntheses of elongation factor 1α and ribosomal proteins inXenopus laevis. Nucl. Acids Res. 21: 4721–4725.

    PubMed  Google Scholar 

  • Loreni, F., A Francesconi, R. Jappelli & F. Amaldi, 1992. Analysis of mRNAs under translational control duringXenopus embryogenesis: isolation of new ribosomal protein clones. Nucl. Acids Res. 20: 1859–1863.

    PubMed  Google Scholar 

  • Loreni, F., I. Ruberti, I. Bozzoni, P. Pierandrei-Amaldi & F. Amaldi, 1985. Nucleotide sequence of the L1 ribosomal protein gene ofXenopus laevis: remarkable sequence homology among introns. EMBO J. 4: 3483–3488.

    PubMed  Google Scholar 

  • Mager, W.H., 1988. Review: Control of ribosomal protein gene expression. Biochim. Biophys. Acta 949: 1–15.

    PubMed  Google Scholar 

  • Marchioni, M., S. Morabito, A.L. Salvati, E. Beccari & F. Carnevali, 1993. XrpFl, an amphibian transcription factor composed of multiple polypeptides immunologically related to the GA binding protein α and β subunits, is differentially expressed duringXenopus laevis development. Mol. Cell. Biol. 13: 6479–6489.

    PubMed  Google Scholar 

  • Mariottini, P., F. Amaldi, 1990. The 5′ untranslated region of mRNA for ribosomal protein S19 is involved in its translation duringXenopus development. Mol. Cell. Biol. 10: 816–822.

    PubMed  Google Scholar 

  • Mariottini, P., C. Bagni, F. Annesi & F. Amaldi, 1988. Isolation and nucleotide sequences of cDNAs forXenopus laevis ribosomal protein S8: similarities in the 5′ and 3′ untranslated regions of mRNAs for different r-proteins. Gene 67: 69–74.

    PubMed  Google Scholar 

  • Mariottini, P., C. Bagni, A. Francesconi, F. Cecconi, M.J. Serra, Q.-M. Chen, F. Loreni, F. Annesi & F. Amaldi, 1993. Sequence of the gene coding for ribosomal protein S8 ofXenopus laevis. Gene 132: 255–260.

    PubMed  Google Scholar 

  • Meyuhas, O., E.A. Thompson & R.P. Perry, 1987. Glucocorticoid selectively inhibit translation of ribosomal protein mRNAs in P1798 lymphosarcoma cells. Mol. Cell. Biol. 7: 2691–2699.

    PubMed  Google Scholar 

  • Nomura, M., 1990. History of ribosome research: a personal account, pp. 3–55 in The Ribosome: Structure, Function and Evolution, edited by W. Hill et al., Amer. Soc. Microbiol, Washington.

    Google Scholar 

  • Perry, R.P. & O. Meyuhas, 1990. Translational control of ribosomal protein production in mammalian cells. Enzyme 44: 83–92.

    PubMed  Google Scholar 

  • Pierandrei-Amaldi, P., F. Amaldi, I. Bozzoni & P. Fragapane, 1987. Regulation of ribosomal protein genes duringXenopus development, pp 267–278 in Molecular Approaches to Developmental Biology: UCLA Symposia on Molecular and Cellular Biology. vol 51, edited by R.A. Firtel and E.H. Davidson, Alan R. Liss, New York.

    Google Scholar 

  • Pierandrei-Amaldi, P. & E. Beccari, 1981. Messenger RNA for ribosomal proteins inXenopus laevis oocytes. Eur. J. Biochem. 106: 603–611.

    Google Scholar 

  • Pierandrei-Amaldi, P., E. Beccari, I. Bozzoni & F. Amaldi, 1985a. Ribosomal protein production in normal and anucleolateXenopus embryos: regulation at the posttranscriptional and translational levels. Cell 42: 317–323.

    PubMed  Google Scholar 

  • Pierandrei-Amaldi, P., I. Bozzoni & B. Cardinali. 1988. Expression of the gene for ribosomal protein L1 inXenopus embryos: alteration of gene dosage by microinjection. Genes Dev. 2: 23–31.

    PubMed  Google Scholar 

  • Pierandrei-Amaldi, P., N. Campioni, E. Beccari, I. Bozzni & F. Amaldi, 1982. Expression of ribosomal protein genes inXenopus laevis development. Cell 30: 163–171.

    PubMed  Google Scholar 

  • Pierandrei-Amaldi, P., N. Campioni & B. Cardinali, 1991. Experimental changes in the amount of maternally stored ribosomes affect the translation efficiency of ribosomal protein mRNA inXenopus embryo. Cell. Mol. Biol. 37: 227–238.

    PubMed  Google Scholar 

  • Pierandrei-Amaldi, P., N. Campioni, P. Gallinari, E. Beccari, I. Bozzoni & F. Amaldi, 1985b. Ribosomal protein synthesis is not autogenously regulated at the translational level inXenopus laevis. Dev. Biol. 167: 281–289.

    Google Scholar 

  • Planta, R.J., W.H. Mager, R.J. Leer, L.P. Wouldt, H.A. Raué & T.T.A.L. El-Baradi, 1986. Structure and expression of ribosomal protein genes in yeast, pp. 699–718 in Structure, Function and Genetics of Ribosomes, edited by B. Hardesty and G. Kramer. Springer Verlag, New York.

    Google Scholar 

  • Planta, R.J. & H.A. Raué, 1988. Control of ribosome biogenesis in yeat. Trends Genet. 4: 64–68.

    PubMed  Google Scholar 

  • Prislei, S., A. Michienzi, C. Presutti, P. Fragapane & I. Bozzoni, 1993. Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes. Nucl. Acids Res. 21: 5824–5830.

    PubMed  Google Scholar 

  • Ray, B.K., T.G. Brendler, S. Adya, S. Daniels-McQueen, J.K. Miller, J.W.B. Hershey, J.A. Grifo, W.C. Merrick & R.E. Thach, 1983. Role of mRNA competition in regulatory translation: Further characterization of mRNA discriminatory initiation factors. Proc. Natl. Acad. Sci. USA 80: 663–667.

    PubMed  Google Scholar 

  • Steel, L.F. & A. Jacobson, 1991: Sequence elements that affect mRNA translation activity in developingDictyostelium cells. Dev. Genetics 12: 98–103.

    Google Scholar 

  • Tycowski, K.T., M.-D. Shu & J.A. Steitz, 1993. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes & Dev 7: 1176–1190.

    Google Scholar 

  • Wagner, M. & R.P. Perry, 1985. Characterization of the multigene family encoding the mouse S16 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA. Mol. Cell. Biol. 5: 3560–3576.

    PubMed  Google Scholar 

  • Wallace, H.R. & M.L. Birnstiel, 1966. Ribosomal cistrons and the nucleolar organizer. Biochim. Biophys. Acta 114: 296–310.

    PubMed  Google Scholar 

  • Warner, J.R., D.M. Baronas-Lowell, F.J. Eng, S.P. Johnson, Q. Ju & B.E. Morrow, 1990. Genetic approaches to ribosome biosynthesis in the yeastSaccharomyces cerevisiae, pp. 699–718 in The Ribosome: Structure, Function and Evolution, edited by W.E. Hill, A. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger & J.R. Warner. American Society for microbiology, Washington, D.C.

    Google Scholar 

  • Weiss, Y.C., C.A. Vaslet & M. Rosbash, 1981. Ribosomal protein mRNAs increase dramatically duringXenopus development. Dev. Biol. 87: 330–339.

    PubMed  Google Scholar 

  • White, M.W., C. Degnin, J. Hill & D.R. Morris, 1990. Specific regulation by endogenous polyamines of translational initiation of S-adenosylmethionine decarboxylase mRNA in swiss 3T3 fibroblasts. Biochem. J. 268: 657–660.

    PubMed  Google Scholar 

  • Wormington, W.M., 1986. Stable repression of ribosomal protein L1 synthesis inXenopus oocytes by microinjection of antisense RNA. Proc. Natl. Acad. Sci. USA 83: 8639–8643.

    PubMed  Google Scholar 

  • Wormington, M.W., 1989. Developmental expression and 5S binding activity ofXenopus ribosomal protein L5. Mol. Cell. Biol. 9: 5281–5288.

    PubMed  Google Scholar 

  • Wormington, W.M., Schlissel & D.D. Brown, 1983. Developmental regulation ofXenopus 5S RNA genes. Cold Spring Harbor Symp. Quant. Biol. 47: 879–884.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierandrei-Amaldi, P., Amaldi, F. Aspects of regulation of ribosomal protein synthesis inXenopus laevis . Genetica 94, 181–193 (1994). https://doi.org/10.1007/BF01443432

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443432

Key words

Navigation