Skip to main content
Log in

Quadratically constrained least squares and quadratic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We consider the following problem: Compute a vectorx such that ∥Ax−b2=min, subject to the constraint ∥x2=α. A new approach to this problem based on Gauss quadrature is given. The method is especially well suited when the dimensions ofA are large and the matrix is sparse.

It is also possible to extend this technique to a constrained quadratic form: For a symmetric matrixA we consider the minimization ofx T A x−2b T x subject to the constraint ∥x2=α.

Some numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dahlquist, G., Golub, G.H., Nash, St.G. (1979): Bounds for the Error in Linear Systems. In: Proc. of the Workshop on Semi-Infinite Programming, ed. R. Hettich. Springer, Berlin Heidelberg New York, pp. 154–172

    Google Scholar 

  2. Davis, P.J., Rabinowitz, P. (1984): Methods of Numerical Integration. Academic Press, Orlando

    Google Scholar 

  3. Gander, W. (1981): Least Squares with a Quadratic Constraint. Numer. Math.36, 291–307

    Google Scholar 

  4. Gander, W., Golub, G.H., von Matt, U. (1989): A Constrained Eigenvalue Problem. Linear Algebra Appl.114/115, 815–839

    Google Scholar 

  5. Golub, G.H. (1973): Some Modified Matrix Eigenvalue Problems. SIAM Review15, 318–334

    Google Scholar 

  6. Golub, G.H. (1974): Bounds for Matrix Moments, Rocky Mountain. J. Math.,4, 207–211

    Google Scholar 

  7. Golub, G.H., Kahan, W. (1965): Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal.2, 205–224

    Google Scholar 

  8. Golub, G.H., O'Leary, D.P. (1989): Some History of the Conjugate Gradient and Lanczos Algorithms: 1948–1976. SIAM Review31, 50–102

    Google Scholar 

  9. Golub, G.H., Van Loan, C.F. (1989): Matrix Computations, 2nd Ed. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  10. Golub, G.H., Wwlsch, J.H. (1969): Calculation of Gauss Quadrature Rules. Math. Comp.23, 221–230

    Google Scholar 

  11. Householder, A.S. (1975): The Theory of Matrices in Numerical Analysis. Dover Publications, New York

    Google Scholar 

  12. Karlin, S., Studden, W.J. (1966): Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience Publishers, New York

    Google Scholar 

  13. Krylov, V.I. (1962): Approximate Calculation of Integrals. translated by A.H. Stroud. Macmillan, New York

    Google Scholar 

  14. Lawson, C., Hanson, R. (1974): Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  15. Paige, C.C. (1972): Computational Variants of the Lanczos Method for the Eigenproblem. J. Inst. Math. Appl.10, 373–381

    Google Scholar 

  16. Paige, C.C., Saunders, M.A. (1982): LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw.8, 43–71

    Google Scholar 

  17. Paige, C.C., Saunders, M.A. (1982): LSQR: Sparse Linear Equations and Least Squares Problems. ACM Trans. Math. Softw.8, 195–209

    Google Scholar 

  18. Parlett, B.N. (1980): The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  19. Reinsch, C.H. (1971): Smoothing by Spline Functions. II. Numer. Math.16, 451–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was in part supported by the National Science Foundation under Grant DCR-8412314 and by the National Institute of Standards and Technology under Grant 60NANB9D0908.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub, G.H., von Matt, U. Quadratically constrained least squares and quadratic problems. Numer. Math. 59, 561–580 (1991). https://doi.org/10.1007/BF01385796

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385796

Mathematics Subject Classification (1991)

Navigation