Skip to main content
Log in

Creatine kinase in non-muscle tissues and cells

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Over the past years, a concept for creatine kinase function, the ‘PCr-circuit’ model, has evolved. Based on this concept, multiple functions for the CK/PCr-system have been proposed, such as an energy buffering function, regulatory functions, as well as an energy transport function, mostly based on studies with muscle. While the temporal energy buffering and metabolic regulatory roles of CK are widely accepted, the spatial buffering or energy transport function, that is, the shuttling of PCr and Cr between sites of energy utilization and energy demand, is still being debated. There is, however, much circumstantial evidence, that supports the latter role of CK including the distinct, isoenzyme-specific subcellular localization of CK isoenzymes, the isolation and characterization of functionally coupledin vitro microcompartments of CK with a variety of cellular ATPases, and the observed functional coupling of mitochondrial oxidative phosphorylation with mitochondrial CK. New insight concerning the functions of the CK/PCr-system has been gained from recent M-CK null-mutant transgenic mice and by the investigation of CK localization and function in certain highly specialized non-muscle tissues and cells, such as electrocytes, retina photoreceptor cells, brain cells, kidney, salt glands, myometrium, placenta, pancreas, thymus, thyroid, intestinal brush-border epithelial cells, endothelial cells, cartilage and bone cells, macrophages, blood platelets, tumor and cancer cells. Studies with electric organ, includingin vivo 31P-NMR, clearly reveal the buffer function of the CK/PCr-system in electrocytes and additionally corroborate a direct functional coupling of membrane-bound CK to the Na+/K+-ATPase. On the other hand, experiments with live sperm and recentin vivo 31P-NMR measurements on brain provide convincing evidence for the transport function of the CK/PCr-system. We report on new findings concerning the isoenzyme-specific cellular localization and subcellular compartmentation of CK isoenzymes in photoreceptor cells, in glial and neuronal cells of the cerebellum and in spermatozoa. Finally, the regulation of CK expression by hormones is discussed, and new developments concerning a connection of CK with malignancy and cancer are illuminated. Most interesting in this respect is the observed upregulation of CK expression by adenoviral oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

BGC:

Bergmann glial cell

GL:

granule cell layer

ML:

molecular layer

PN:

Purkinje neuron

PCr:

phosphoryl-creatine

Cr:

creatine

cCr:

cyclo-creatine

PcCr:

phosphoryl-cyclo-creatine

ROS:

photoreceptor rod outer segment

IS:

inner segment

DNFB:

2,4-dinitro-fluoro-benzene

PEP:

phosphoenolpyruvate

PK:

pyruvate kinase

GPA:

3-guanidino-propionic acid

References

  1. Eppenberger HM, Dawson DM, Kaplan NO: The comparative enzymology of CKs. I) Isolation and characterization from chicken and rabbit tissues. J Biol Chem 242: 204–209, 1967

    PubMed  Google Scholar 

  2. Hossle JP, Schlegel J, Wegmann G, Wyss M, Böhlen P, Eppenberger JM, Wallimann T, Perriard JC: Distinct tissue-specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun 151: 408–416, 1988

    PubMed  Google Scholar 

  3. Haas RC, Strauss AW: Separate nuclear genes encode sarcomer-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265: 6921–6927, 1990

    PubMed  Google Scholar 

  4. Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: a key enzyme of aerobic metabolism. Biochim Biophys Acta 1102: 119–166, 1992

    PubMed  Google Scholar 

  5. Turner DC, Wallimann T, Eppenberger HM: A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70: 702–705, 1973

    PubMed  Google Scholar 

  6. Wallimann T, Turner DC, Eppenberger HM: Localization of creatine kinase isoenzymes in myofibrils. I Chicken skeletal muscle. J Cell Biol 75: 297–317, 1977

    PubMed  Google Scholar 

  7. Wallimann T, Moser H, Eppenberger HM: Isoenzyme-specific localization of M-line bound CK in myogenic cells. J Muscle Res Cell Motil 4: 429–441, 1983

    PubMed  Google Scholar 

  8. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phospho-creatine circuit’ for cellular energy homeostasis. Biochem J 281: 21–40, 1992

    PubMed  Google Scholar 

  9. Wallimann T, Schlösser T, Eppenberger HM: Function of M-line-bound CK as intramyofibrillar ATP regenerator at the receiving end of the phosphocreatine shuttle in muscle. J Biol Chem 259: 5238–5246, 1984

    PubMed  Google Scholar 

  10. Krause SM, Jacobus WE: Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase. J Biol Chem 267: 2480–2486, 1991

    Google Scholar 

  11. Ventura-Clapier R, Mekhfi H, Vassort G: Role of creatine kinase in force development in chemically skinned rat cardiac muscle. J Gen Phys 89: 815–837, 1987

    Google Scholar 

  12. Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T: Muscle-type MM-creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+-uptake and regulate local ATP/ADP ratios. J Biol Chem 265: 5258–5266, 1990

    PubMed  Google Scholar 

  13. Korge P, Byrd SK, Campbell KB: Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca2+-ATPase. Eur J Biochem 213: 973–980, 1993

    PubMed  Google Scholar 

  14. Grosse R, Spitzer E, Kupriyanov VV, Saks VA, Repke KRH: Coordinate interplay between (Na+/K+)-ATPase and CK optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle. Biophys Acta 603: 142–156, 1980

    PubMed  Google Scholar 

  15. Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle? J Mol Cardiol 19: 115–118, 1987

    Google Scholar 

  16. Wallimann T, Eppenberger HM: Localization and function of M-line-bound creatine kinase: M-band model and creatine phosphate shuttle. In: JW Shay (ed.) Cell and Muscle Motility Vol. 6. Plenum Publ. Co., New York, 1985, pp 239–285

    Google Scholar 

  17. Arrio-Dupont M, Bechet JJ, d'Albis A: A model system of coupled activity of co-immobilized creatine kinase and myosin. Eur J Biochem 207: 951–957, 1992

    PubMed  Google Scholar 

  18. Jacobus WE, Lehninger AL: Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem 248: 4803–4810, 1973

    PubMed  Google Scholar 

  19. Jacobs M, Heldt HW, Klingenberg M: High activity of CK in mitochondria from muscle and brain. Evidence for a separate mitochondrial isoenzyme of CK. Biochem Biophys Res Commun 16: 516–521, 1964

    PubMed  Google Scholar 

  20. Kottke M, Adams V, Wallimann T, Kumar-Nalam V, Brdiczka D: Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta 1061: 215–225, 1991

    PubMed  Google Scholar 

  21. Jacob WJ, Biermans W, Bakker A: Mitochondrial contact sites: a dynamic compartment for creatine kinase activity. In: PP De Deyn, B Marescau, V Stalon, IA Qureshi (eds) Guanidino Compounds in Biology and Medicine. J. Libbey, London, 1992, pp 165–174

    Google Scholar 

  22. Jacobus WE: Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol 47: 707–725, 1985

    PubMed  Google Scholar 

  23. Schlegel J, Wyss M, Eppenberger HM, Wallimann T: Functional studies with the octameric and dimeric form of mitochondrial creatine kinase: differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. J Biol Chem 265: 9221–9227, 1990

    PubMed  Google Scholar 

  24. Schnyder T, Gross H, Winkler HP, Eppenberger HM, Wallimann T: Structure of the mitochondrial creatine kinase octamer: high resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol 112: 95–101, 1991

    PubMed  Google Scholar 

  25. Rojo M, Hovius R, Demel RA, Nicolay K, Wallimann T: Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266: 20290–20295, 1991

    PubMed  Google Scholar 

  26. Erickson-Viitanen S, Geiger PJ, Viitanen P, Bessman SP: Compartmentation of mitochondrial creatine phosphokinase. II The importance of the outer mitochondrial membrane for mitochondrial compartmentation. J Biol Chem 257: 14405–14411, 1982

    PubMed  Google Scholar 

  27. Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WE: Creatine kinase of rat heart mitochondria: the demonstration of functional coupling to oxidative phosphorylation in an inner membrane preparation. J Biol Chem 260: 7757–7764, 1985

    PubMed  Google Scholar 

  28. Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117–126, 1987

    PubMed  Google Scholar 

  29. Saks VA, Belikova YO, Kuznetsov AV, Kuchua ZA, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for energy transport. ADP diffusion and cardiomyopathy. Am J Physiol Suppl (Oct) 261: 30–38, 1991

    PubMed  Google Scholar 

  30. Bessman SP, Fonyo A: The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem Biophys Res Commun 22: 597–602, 1966

    PubMed  Google Scholar 

  31. Brdiczka D: Contact sites between mitochondrial envelope membranes. Structure and function in energy- and proteintransport. Biochim Biophys Acta 1071: 291–321, 1991

    PubMed  Google Scholar 

  32. Gross M, Wallimann T: Kinetics of assembly and dissociation of mitochondrial creatine kinase octamers. A fluorescence study. Biochem 32: 13933–13940, 1993

    Google Scholar 

  33. Bessman SP, Carpenter CL: The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54: 831–862, 1985

    PubMed  Google Scholar 

  34. Wallimann T, Schnyder T, Schlegel J, Wyss M, Wegmann G, Rossi AM, Hemmer W, Eppenberger HM, Quest AFG: Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit. In: RJ Paul, G Elzinga, K Yamada (eds) Progress in Clinical and Biological Research, Vol. 315: ‘Muscle Energetics’. A.R. Liss Inc., New York, 1989, pp 159–176

    Google Scholar 

  35. Saks VA, Ventura-Clapier R: Biochemical organization of energy metabolism in muscle. J Biochem Organization 1: 9–29, 1992

    Google Scholar 

  36. Wallimann T: Dissecting the role of creatine kinase. The phenotype of gene knockout mice deficient in a creatine kinase isoform sheds new light on the physiological role of the phosphocreatine circuit. Curr Biol 4: 42–46, 1994

    PubMed  Google Scholar 

  37. Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the ‘phosphocreatine shuttle’. Am J Physiol 246: C365-C377, 1984

    PubMed  Google Scholar 

  38. Hemmer W, Riesinger I, Wallimann T, Eppenberger HM, Quest AFG: Brain-type creatine kinase in photoreceptor cell outer segments: role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction. J Cell Sci 106: 671–684, 1993

    PubMed  Google Scholar 

  39. Koretsky AP, Brosnan JM, Chen L, Chen J, VanDyke T: NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci USA 87: 3112–3116, 1990

    PubMed  Google Scholar 

  40. Brosnan JM, Chen L, Wheeler CE, VanDyke T, Koretsky AP: Phosphocreatine protects from a fructose load in transgenic mouse liver expressing creatine kinase. Am J Physiol 260: C1191-C1200, 1991

    PubMed  Google Scholar 

  41. Miller KR, Halow JM, Koretsky AP: Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and issemia. Am J Physiol 265 (6 pt 1): C1544–1551, 1993

    PubMed  Google Scholar 

  42. Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, terLaak H, Wieringa B: Skeletal muscles of mice deficient in M-creatine kinase lack burst activity. Cell 74: 621–631, 1993

    PubMed  Google Scholar 

  43. Hasselbach W, Oetliker H: Energetics and electrogenicity of the sarcoplasmic reticulum pump. Annu Rev Physiol 45: 325–339, 1983

    PubMed  Google Scholar 

  44. Läuger P: Ca2+-pump sarcoplasmic reticulum. In: Electrogenic ion pumps, Vol. 5. Sinnauer Assoc. Inc. Publishers, Sunderland, Mass., USA, 1991, pp 226–251

    Google Scholar 

  45. Ventura-Clapier R, Veksler VK, Elizarova GV, Mekhfi H, Levitskaya EL, Saks VA: Contractile properties and creatine kinase activity of myofilaments following ischemia and reperfusion of the rat heart. Biochem Med Metabolic Biol 38: 300–310, 1987

    Google Scholar 

  46. Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV: Reversible MM-creatine kinase binding to cardiac myofibrils. Am J Physiol 253: C444-C455, 1987

    PubMed  Google Scholar 

  47. Gudbjarnason S, Mathes P, Ravens KG: Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1: 325–339, 1970

    PubMed  Google Scholar 

  48. Morgan HE, Parmeggiani A: Regulation of glycogenolysis in muscle. III Control of muscle glycogen phosphorylase activity. J Biol Chem 239: 2440–2445, 1964

    PubMed  Google Scholar 

  49. Passoneau JV, Lowry OH: Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Commun 7: 10–15, 1992

    Google Scholar 

  50. Rose IA, Warms JVB, O'Conell EL: Role of inorganic phosphate in stimulating the glucose utilization of human red blood cells. Biochem Biophys Res Commun 15: 33–37, 1964

    PubMed  Google Scholar 

  51. Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ: Phosphagen and intracellular pH changes during contraction of creatinedepleted rat muscle. Am J Physiol 250: C264-C274, 1986

    PubMed  Google Scholar 

  52. Dillon PF, Clark JF: The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase. J Theor Biol 143: 275–284, 1990

    PubMed  Google Scholar 

  53. Wegmann C, Zanolla E, Eppenberger HM, Wallimann T:In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil 13: 420–435, 1992

    PubMed  Google Scholar 

  54. Van Waarde A, Van den Thillart G, Erkelens C, Addink A, Lugtenburg J: Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. J Biol Chem 265: 914–923, 1990

    PubMed  Google Scholar 

  55. Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV: Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta 803: 254–264, 1984

    PubMed  Google Scholar 

  56. Savabi F: Free creatine available to the creatine phosphate energy shuttle in isolated rat atria. Proc Natl Acad Sci USA 85: 7476–7480, 1988

    PubMed  Google Scholar 

  57. Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117–126, 1987

    PubMed  Google Scholar 

  58. Zeleznikar RJ, Goldberg ND: Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from18O-labelling of metabolite phosphoryls. J Biol Chem 266: 15110–15119, 1991

    PubMed  Google Scholar 

  59. Wyss M, Wallimann T: Metabolite channelling in aerobic metabolism. J Theor Biol 158: 129–132, 1992

    PubMed  Google Scholar 

  60. Zeleznikar RJ, Heyman RA, Graeff RM, Walseth TF, Dawis SM, Butz EA, Goldberg ND: Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265: 300–311, 1990

    PubMed  Google Scholar 

  61. Yoshizaki K, Watari H, Radda G: Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by31P-NMR. Biochim Biophys Acta 1051: 144–150, 1990

    PubMed  Google Scholar 

  62. Saks VA, Belikova YO, Kuznetsov AV:In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074: 302–311, 1991

    PubMed  Google Scholar 

  63. Saks VA, Rosenstraukh LV, Smirnov VN, Chazov EI: Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56: 691–706, 1978

    PubMed  Google Scholar 

  64. Bessman SP, Geiger PJ: Transport of energy in muscle. The phosphorylcreatine shuttle. Science 211: 448–452, 1981

    PubMed  Google Scholar 

  65. Bittl JA, Ingwall JS: Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. J Biol Chem 260: 3512–3517, 1985

    PubMed  Google Scholar 

  66. Perry SB, McAuliffe J, Balschi JA, Hickey PR, Ingwall JS: Velocity of the CK reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Biochem 27: 2165–2172, 1988

    PubMed  Google Scholar 

  67. Brindle KM, Blackledge MJ, Challiss JRA, Radda GK:31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric contraction in the rat hind limbin vivo. Biochem 28: 4887–4893, 1989

    Google Scholar 

  68. Sauter A, Rudin M: Determination of creatine kinase kinetic parameters in rat brain by NMR-magnetization transfer: correlation with brain function. J Biol Chem 268: 13166–13171, 1993

    PubMed  Google Scholar 

  69. Shapiro B: The existential decision of a sperm. Cell 49: 293–294, 1987

    PubMed  Google Scholar 

  70. Wallimann T, Moser H, Zurbriggen B, Wegmann G, Eppenberger HM: Creatine kinase isoenzymes in spermatozoa. J Muscle Res Cell Motil 7: 25–34, 1986

    PubMed  Google Scholar 

  71. Tombes RM, Shapiro BM: Metabolite channeling: a phosphocreatine shuttle to mediate high energy phosphate transport between sperm mitochondria and tail. Cell 41: 325–334, 1985

    PubMed  Google Scholar 

  72. Huszar G, Corrales M, Vigue L: Correlation between sperm creatine phosphokinase activity and sperm concentration in normospermic and oligospermic men. Gamete Res 19: 67–75, 1988

    PubMed  Google Scholar 

  73. Huszar G, Vigue L: Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentration and abnormal head morphology. Mol Reprod Dev 34: 292–298, 1993

    PubMed  Google Scholar 

  74. Huszar G, Vigue L, Morshedi M: Sperm creatine phosphokinase M-isoform ratios and fertilizing potential of men: a blinded study of 84 couples treated within vitro fertilization. Fertil Steril 57: 882–888, 1992

    PubMed  Google Scholar 

  75. Garber AT, Winkfein RJ, Dixon GH: A novel creatine kinase cDNA whose transcript shows enhanced testicular expression. Biochim Biophys Acta 1087: 256–258, 1990

    PubMed  Google Scholar 

  76. Hammerstedt RH, Lardy HA: The effect of substrate cycling on the ATP yield of sperm glycolysis. J Biol Chem 258: 8759–8768, 1983

    PubMed  Google Scholar 

  77. Leonardi D, Colpi GM, Campana A, Balerna M: Protein characterization of multi-fraction split-ejaculates. Some physicochemical properties of prostatic and vesicular proteins. Acta Eur Fertil 14: 181–189, 1983

    PubMed  Google Scholar 

  78. Lee HJ, Fillers WS, Iyengar MR: Phosphocreatine, an intracellular high-energy compound, is found in the extracellular fluid of the seminal visicles in mice and rats. Proc Natl Acad Sci USA 85: 7265–7269, 1988

    PubMed  Google Scholar 

  79. Lee H, Gong C, Wu S, Iyengar MR: Accumulation of phosphocreatine and creatine in the cells and fluid of mouse seminal vesicles is regulated by testosteron. Biol Reprod 44: 540–545, 1991

    PubMed  Google Scholar 

  80. Fakih H, MacLusky N, DeCherney A, Wallimann T, Huszar G: Enhancement of human sperm motility and velocityin vitro: effects of calcium and creatine phosphate. Fertil Steril 46: 938–944, 1986

    PubMed  Google Scholar 

  81. Kavanagh JP, Darby C: Creatine kinase and ATPase in human seminal fluid and prostatic fluid. J Reprod Fertil 68: 51–56, 1983

    PubMed  Google Scholar 

  82. Asseo PP, Panidis DK, Papadimas JS, Ikkos DG: Creatine kinase in seminal plasma of infertile men: activity and isoenzymes. Int J Androl 4: 431–439, 1981

    PubMed  Google Scholar 

  83. Tombes RM, Shapiro BM: Enzyme termini of a phospho-creatine shuttle: purification and characterization of two creatine kinase isoenzymes from sea urchin sperm. J Biol Chem 262: 16011–16019, 1987

    PubMed  Google Scholar 

  84. Wothe DD, Charbonneau H, Shapiro BM: The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication. Proc Natl Acad Sci USA 87: 5203–5207, 1990

    PubMed  Google Scholar 

  85. Mühlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M: Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biol 133/134: 245–262, 1994

    Google Scholar 

  86. Quest AFG, Shapiro B: Membrane-associated sperm flagellar creatine kinase cytosolic isoforms in a phosphocreatine shuttle. J Biol Chem 266: 19803–19811, 1991

    PubMed  Google Scholar 

  87. Quest AFG, Chadwick JK, Wothe DD, McIlhinney RAJ, Shapiro BM: Myristoylation of flagellar creatine kinase in the sperm phosphocreatine shuttle is linked to its membrane association properties. J Biol Chem 267: 15080–15085, 1992

    PubMed  Google Scholar 

  88. Tombes RM, Farr A, Shapiro BM: Sea urchin sperm creatine kinase: the flagellar isoenzyme is a microtubule-associated protein. Exp Cell Res 178: 307–317, 1988

    PubMed  Google Scholar 

  89. Christen R, Schackmann RW, Dahlquist FW, Shapiro BM:31P-NMR analysis of sea urchin sperm activation: reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp Cell Res 149: 289–294, 1983

    PubMed  Google Scholar 

  90. Tombes RM, Brokaw CJ, Shapiro BM: CK-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J 52: 75–86, 1987

    PubMed  Google Scholar 

  91. Blum H, Nioka S, Johnson RG: Activation of the Na+,K+-ATPase inNarcine brasiliensis. Proc Natl Acad Sci USA 87: 1247–1251, 1990

    PubMed  Google Scholar 

  92. Carneiro LH, Hasson-Voloch A: Creatine kinase from the electric organ ofElectrophorus electricus: Isoenzyme analysis. Int J Biochem 15: 111–114, 1983

    PubMed  Google Scholar 

  93. Barrantes FJ, Mieskes G, Wallimann T: A membrane-associated CK identified as an acidic species of the non-receptor, peripheral v-proteins inTorpedo acetylcholine receptor membranes. FEBS Lett 152: 270–275, 1983

    PubMed  Google Scholar 

  94. West BL, Babbitt PC, Mendez B, Baxter JD: Creatine kinase protein sequence encoded by a cDNA made fromTorpedo californica electric organ mRNAs. Proc Natl Acad Sci USA 81: 7007–7012, 1984

    Google Scholar 

  95. Giraudat J, Devillers-Thiery A, Perriard JC, Changeux JP. Complete nucleotide sequence ofTorpedo marmorata mRNA coding for the 43 kDa v2-protein: muscle-specific CK. Proc Natl Acad Sci USA 81: 7313–7317, 1984

    PubMed  Google Scholar 

  96. Witzemann K: Creatine phosphokinase: isoenzymes inTorpedo marmorata. Europ J Biochem 150: 201–210, 1985

    PubMed  Google Scholar 

  97. Perryman MB, Knell JD, Ifegwu J, Roberts R: Identification of the 43-kDa polypeptide associated with acetylcholine receptorenriched membranes and MM-creatine kinase. J Biol Chem 260: 9399–9404, 1985

    PubMed  Google Scholar 

  98. Wallimann T, Walzthöny D, Wegmann G, Moser H, Eppenberger HM, Barrantes FJ: Subcellular localization of creatine kinase inTorpedo electrocytes: association with acetylcholine receptorrich membranes. J Cell Biol 100: 1063–1072, 1985

    PubMed  Google Scholar 

  99. Barrantes FJ, Mieskes G, Wallimann T: Creatine kinase activity in theTorpedo electrocyte and in the non-receptor, peripheral v-proteins from acetylcholine receptor-rich membranes. Proc Natl Acad Sci USA 80: 5440–5444, 1983

    PubMed  Google Scholar 

  100. Barrantes FJ, Braceras A, Caldironi HA, Mieskes G, Moser H, Toren CE, Roque ME, Wallimann T, Zechel A: Isolation and characterization of acetylcholine receptor membrane-associated and soluble electrocyte creatine kinase. J Biol Chem 260: 3024–3034, 1985

    PubMed  Google Scholar 

  101. Gysin R, Yost B, Flanagan SD: Creatine kinase isoenzymes inTorpedo californica: absence of the major brain isoenzyme from nicotinic acetylcholine receptor membrane. Biochem 25: 1271–1278, 1986

    PubMed  Google Scholar 

  102. Borroni E: Role of creatine phosphate in the discharge of the electric organ ofTorpedo marmorata. J Neurochem 43: 795–798, 1984

    PubMed  Google Scholar 

  103. Blum H, Balschi JA, Johnson RG: Coupledin vivo activity of creatine phosphokinase and the membrane-bound (Na+/K+)-ATPase in the resting and stimulated electric organ of the electric fishNarcine brasiliensis. J Biol Chem 266: 10254–10259, 1991

    PubMed  Google Scholar 

  104. Dunant Y, Loctin F, Marsal J, Müller D, Parducz A, Rabasseda X: Energy metabolism and quantal acetylcholine release: effects of Botulinum toxin, 1-fluoro-2,4-dinitrobenzene, and diamide in theTorpedo electric organ. J Neurochem 50: 431–439, 1988

    PubMed  Google Scholar 

  105. Ames A, Walseth TF, Heyman RA, Barad M, Graeff RM, Goldberg ND: Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptor cells. J Biol Chem 261: 13034–13042, 1986

    PubMed  Google Scholar 

  106. Hyghes JT, Jerome D, Krebs HA: Ultrastructure of the avian retina: an anatomical study of the retina of the domestic pigeon (Columba livia) with particular reference to the distribution of mitochondria. Exp Eye Res 14: 189–205, 1972

    PubMed  Google Scholar 

  107. Buono RJ, Sheffield JB: Changes in distribution of mitochondria in the developing chick retina. Exp Eye Res 53: 187–198, 1991

    PubMed  Google Scholar 

  108. Olson A, Pugh EN: Diffusion coefficient of cyclic GMP in Salamander rod outer segments estimated with two fluorescent probes. Biophys J 65: 1335–1352, 1993

    PubMed  Google Scholar 

  109. Wallimann T, Wegmann G, Moser H, Huber R, Eppenberger HM: High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci USA 83: 3816–3819, 1986

    PubMed  Google Scholar 

  110. Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T: Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation 46: 77–87, 1991

    PubMed  Google Scholar 

  111. Dontsov AE, Zak PP, Ostrovskii MA: Regeneration of ATP in outer segments of frog photoreceptors. Biochem (USSR) 43: 471–474, 1978

    Google Scholar 

  112. Schnetkamp PPM, Daemen FJM: Transfer of high-energy phosphates in bovine rod outer segments. Biochim Biophys Acta 672: 307–312, 1981

    PubMed  Google Scholar 

  113. Sitaramayya A, Liebman PA: Mechanism of ATP quench of phosphodiesterase activation in rod disk membranes. J Biol Chem 258: 1205–1209, 1983

    PubMed  Google Scholar 

  114. Sather WA, Detwiler PB: Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proc Natl Acad Sci USA 84: 9290–9294, 1987

    PubMed  Google Scholar 

  115. Fesenko EE, Krapivinsky GB: Cyclic GMP binding sites and light control of free cGMP concentration in vertebrate rod photoreceptors. Photobiochem Photobiophys 13: 345–358, 1986

    Google Scholar 

  116. Mahadevan LC, Whatley SA, Leung TKC, Lim L: The brain form of a key ATP-regulating enzyme, creatine kinase, is a phosphoprotein. Biochem J 222: 139–144, 1984

    PubMed  Google Scholar 

  117. Chida K, Tsunenaga M, Kasahara K, Kohno Y, Kuroki T: Regulation of creatine phosphokinase B activity by protein kinase C. Biochem Biophys Res Commun 173: 346–350, 1990

    PubMed  Google Scholar 

  118. Quest AFG, Soldati T, Hemmer W, Perriard JC, Eppenberger HM, Wallimann T: Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneityin vivo. FEBS Lett 269: 457–464, 1990

    PubMed  Google Scholar 

  119. Kühn H, Hall SW, Wilden U: Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176: 473–478, 1984

    PubMed  Google Scholar 

  120. Mascarelli F, Raulais D, Courtois Y: Fibroblast growth factor phosphorylation and receptors in rod outer segments. EMBO J 8: 2265–2273, 1989

    PubMed  Google Scholar 

  121. Friedman DL, Hejtmancik JF, Hope JN, Perryman B: Developmental expression of creatine kinase isoenzymes in mammalian lens. Exp Eye Res 49: 445–457, 1989

    PubMed  Google Scholar 

  122. Golander A, Binderman I, Kaye AM, Nimrod A, Sömjen D: Stimulation of creatine kinase activity in rat organs by human growth hormonein vivo andin vitro. Endocrinol 118: 1966–1970, 1986

    Google Scholar 

  123. Piatigorsky J: Lens differentiation in vertebrates. Differentiation 19: 134–153, 1981

    PubMed  Google Scholar 

  124. Chandler WL, Fine JS, Emery M, Weaver D, Reichenbach D, Clayson KJ: Regional creatine kinase, adenylate kinase and lartate dehydrogenase in normal canine brain. Stroke 19: 251–255, 1988

    PubMed  Google Scholar 

  125. Maker HS, Lehrer GM, Silides DJ, Weiss C: Regional changes in cerebellar creatine phosphate metabolism during late maturation. Exp Neurol 38: 295–300, 1973

    PubMed  Google Scholar 

  126. Manos P, Bryan GK, Edmond J: Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes and oligodendrocytes. J Neurochem 56: 2101–2107, 1991

    PubMed  Google Scholar 

  127. Kahn MA: Effect of calcium on creatine kinase activity of cerebellum. Histochem 48: 29–32, 1976

    Google Scholar 

  128. Cadoux-Hudson TA, Blackledge MJ, Radda GK: Imaging of human brain creatine kinase activityin vivo. FASEB J 3: 2660–2666, 1989

    PubMed  Google Scholar 

  129. Molloy GR, Wilson CD, Benfield P, de Vellis J, Kumar S: Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons. J Neurochem 59: 1925–1932, 1992

    PubMed  Google Scholar 

  130. Quest AFG, Eppenberger HM, Wallimann T: Purification of brain-type creatine kinase (B-CK) from several tissues of the chicken: B-CK subspecies. Enzyme 41: 33–42, 1989

    PubMed  Google Scholar 

  131. Quest AFG, Eppenberger HM, Wallimann T: Two different B-type creatine kinase subunits dimerize in a tissue-specific manner. FEBS Lett 262: 299–304, 1990

    PubMed  Google Scholar 

  132. Hemmer W, Glaser SJ, Hartmann GR, Eppenberger HM, Wallimann T: Covalent modification of creatine kinase by ATP: evidence for autophosphorylation. In: LMG Heilmeyer (ed.) Cellular Regulation by Protein Phosphorylation. NATO ASI Series Vol. H56. Springer, Berlin, 1991, pp 143–147

    Google Scholar 

  133. Hemmer W, Zanolla E, Furter-Graves EM, Eppenberger HM, Wallimann T: Creatine kinase isoenzymes in chicken cerebellum: specific localization of brain-type CK in Bergmann glial cells and muscle-type CK in Purkinje neurons. Eur J Neurosci 6: 538–549, 1994

    PubMed  Google Scholar 

  134. Soldati T, Schäfer BW, Perriard JC: Alternative ribosomal initiation gives rise to chicken brain-type CK isoproteins with heterogenous amino termini. J Biol Chem 265: 4498–4506, 1990

    PubMed  Google Scholar 

  135. Hemmer W, Skarli M, Perriard JC, Wallimann T: Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett 327: 35–40, 1993

    PubMed  Google Scholar 

  136. Swanson Ph: The particulate adenosine triphosphate creatine phosphotransferase from brain: its distribution in subcellular fractions and its properties. J Neurochem 14: 343–356, 1967

    PubMed  Google Scholar 

  137. Booth RFG, Clark JB: Studies on the mitochondrially bound form of rat brain creatine kinase. Biochem J 170: 145–151, 1978

    PubMed  Google Scholar 

  138. Wevers RA, Reutlingsperger CPM, Dam B, Soons JBJ: Mitochondrial creatine kinase in the brain. Clin Chim Acta 119: 209–223, 1982

    PubMed  Google Scholar 

  139. Wyss M, Schlegel J, James P, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J Biol Chem 265: 15900–15908, 1990

    PubMed  Google Scholar 

  140. Hemmer W, Wallimann T: Functional aspects of creatine kinase in brain. Dev Neurosci 15 (3–5), 1993

  141. Hamburg RJ, Friedman DL, Olson EN, Ma TS, Cortez MD, Goodman C, Puleo PR, Perryman MB: Muscle creatine kinase isoenzyme expression in adult human brain. J Biol Chem 265: 6403–6409, 1990

    PubMed  Google Scholar 

  142. Palay S, Chan-Palay V: Cerebellar cortex, cytology and organization. Springer Verlag, New York, 1974

    Google Scholar 

  143. Rakic P: Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study inMaccacus rhesus. J Comp Neurol 141: 283–312, 1971

    PubMed  Google Scholar 

  144. Hatten ME: Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci 13: 179–184, 1990

    PubMed  Google Scholar 

  145. Newman EA: Regulation of potassium levels by glia cells in the retina. Trends Neurosci 8:156–159, 1985

    Google Scholar 

  146. Reichenbach A: Glial K+-permeability and CNS K+-clearance by diffusion and spatial buffering. In: NJ Abott (ed.) Glial-Neuronal Interaction. Acad. Sci. New York, 1991, pp 272–286

    Google Scholar 

  147. Hertz L, Peng L: Energy metabolism at the cellular level of the CNS. Can J Physiol Pharmacol 70: S145-S157, 1991

    Google Scholar 

  148. Knöpfel T, Vranesic I, Staub C, Gähwiler BH: Climbing fibre responses in olivo-cerebellar slice cultures. II Dynamics of cytosolic calcium in Purkinje cells. Eur J Neurosci 3: 343–348, 1991

    PubMed  Google Scholar 

  149. Ito M: The cellular basic of cerebellar plasticity. Curr Opinion Neurobiol 1: 616–620, 1991

    Google Scholar 

  150. Kuwajima G, Futatsugi A, Niinobe M, Nakanishi S, Mikoshiba K: Two types of ryanodyne receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron 9: 1133–1142, 1992

    PubMed  Google Scholar 

  151. Villa A, Podini P, Clegg DO, Pozzan T, Meldolesi J: Intracellular Ca2+-stores in chicken Pukinje neurons: differential distribution of low affinity-high capacity Ca2+-binding protein, calsequestrin, of Ca2+-ATPase and of ER lumenal protein. Bip. J Cell Biol 113: 779–791, 1991

    Google Scholar 

  152. Takei K, Stukenbrok H, Metcalf A, Mignery JA, Sudhof TC, Volpe P, DeCamilli P: Ca2+-stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3-receptor, Ca2+-ATPase, and calsequestrin. J Neurosci 12: 489–505, 1992

    PubMed  Google Scholar 

  153. Michelangeli F, DiVirgilio F, Villa A, Podini P, Meldolesi J, Pozzan T: Identification kinetic properties and intracellular localization of the (Ca2+−Mg2+)-ATPase from the intracellular stores of chicken cerebellum. Biochem J 275: 555–561, 1991

    PubMed  Google Scholar 

  154. Campbell AM, Wuytack F, Fambrough DM: Differential distribution of the alternative forms of the sarcoplasmic/endoplasmic reticulum (Ca2+−Mg2+)-ATPase, SERCA 2b and SERCA 2a, in the avian brain. Brain Res 605: 67–76, 1993

    PubMed  Google Scholar 

  155. Rudin M, Sauter A: Dihydropyridine calcium antagonists reduce the consumption of high-energy phosphates in the rat brain. A study using combined31P/1H magnetic resonance spectroscopy and31P saturation transfer. J Pharmacol Exper Therapeutics 251: 700–706, 1989

    Google Scholar 

  156. Friedhoff AJ, Lerner MH: CK isoenzyme associated with synaptosomal membrane and synaptic vesicles. Life Sci 20: 867–872, 1977

    PubMed  Google Scholar 

  157. Lim L, Hall C, Leung T, Mahadevan L, Whatley S: Neuron-specific enolase and CK are protein components of rat brain synaptic plasma membranes. J Neurochem 41: 1177–1182, 1983

    PubMed  Google Scholar 

  158. Sweadner KJ: Two molecular forms of Na+/K+-stimulated ATPase in brain. J Biol Chem 254: 6060–6067, 1979

    PubMed  Google Scholar 

  159. Erecinska M, Silver IA: ATP and brain function. J Cerebr Blood Flow and Metabolism 9: 2–19, 1989

    Google Scholar 

  160. Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56: 395–433, 1987

    PubMed  Google Scholar 

  161. Brady ST, Lasek RJ: Nerve-specific enolase and creatine kinase in axonal transport: ‘Soluble proteins’ and axoplasmic matrix. Cell 23: 515–523, 1981

    PubMed  Google Scholar 

  162. Oblinger MM, Brady ST, McQuarrie IG, Lasek RJ: Cytoplasmic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurol 7: 433–462, 1987

    Google Scholar 

  163. Gerbitz KD, Deufel T, Summer J, Thallemer J, Wieland OH: Brain-specific proteins: creatine kinase BB isoenzyme is cochromatographed during preparation of neuron-specific enolase from human brain. Clin Chim Acta 133: 233–239, 1983

    PubMed  Google Scholar 

  164. Holtzman D, McFarland EW, Jacobs D, Offutt MC, Neuringer LJ: Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance. Dev Brain Res 58: 181–188, 1991

    Google Scholar 

  165. Holtzman D, Herman MM, Desantel M, Lewiston N: Effects of altered osmolality on respiration and morphology of matocilondria from the developing brain. J Neurochem 33: 453–460, 1979

    PubMed  Google Scholar 

  166. Holtzman D, Tsuji M, Wallimann T, Hemmer W: Functional maturation of creatine kinase in rat brain: a hypothesis. Dev Neurosci 15 (3–5), 1993

  167. Binderman I, Harel S, Earon Y, Tomer A, Weisman Y, Kaye AM, Sömjen D: Acute stimulation of creatine kinase activity by vitamin D metabolites in the developing cerebellum. Biochim Biophys Acta 972: 9–16, 1988

    PubMed  Google Scholar 

  168. Bergen HT, Pentecost BT, Dickerman HW, Pfaff DW:In situ hybridization for creatine kinase-B messenger RNA in rat uterus and brain. Mol Cell Endocrinol 92: 111–119, 1993

    PubMed  Google Scholar 

  169. Iyengar MR, Fluellen, CE, Iyengar CW: Creatine kinase from the bovine myometrium: purification and characterization. J Muscle Res Cell Motility 3: 231–246, 1982

    Google Scholar 

  170. Payne RM, Friedman DL, Grant JW, Perryman BM, Strauss AW: Creatine kinase isoenzymes are highly regulated during pregnancy in rat uterus and placenta. Am J Physiol 265: E624-E635, 1993

    PubMed  Google Scholar 

  171. Clark JF, Khuchua Z, Kuznetsov A, Saks VA, Ventura-Clapier R: Compartmentation of creatine kinase isoenzymes in myometrium of gravid guinea pigs. J Physiol (Lond) 466: 553–572, 1993

    Google Scholar 

  172. Dawson MJ, Wray S: Changes in phosphorus metabolism in the rat uterus following parturition. J Physiol (Lond) 336: 19–20, 1983

    Google Scholar 

  173. Reiss NA, Kaye AM: Identification of the major component of the estrogen-induced protein of rat uterus as the BB-isoenzyme of CK. J Biol Chem 256: 5741–5749, 1981

    PubMed  Google Scholar 

  174. Spatz M, Waisman A, Kaye AM: Responsiveness of the 5′-flanking region of the brain type isozyme of creatine kinase to estrogens and anti-estrogens. J Steroid Biochem Mol Biol 41: 711–714, 1992

    PubMed  Google Scholar 

  175. Iyengar MR, Fluellen CE, Iyengar CW: Increased creatine kinase in the hormone-stimulated smooth muscle of the bovine uterus. Biochem Biophys Res Commun 94: 948–954, 1980

    PubMed  Google Scholar 

  176. Degani HT, Shaer A, Victor TA, Kaye AM: Estrogen-induced changes in high-energy phosphate metabolism in rat uterus:31P-NMR studies. Biochem 23: 2572–2577, 1984

    Google Scholar 

  177. Degani HT, Victor TA, Kaye AM: Effects of 17β-estradiol on high energy phosphate concentration and the flux catalysed by creatine kinase in immature rat uteri:31P nuclear magnetic resonance studies. Endocrinol 122: 1631–1638, 1988

    Google Scholar 

  178. Keller TCS, Gordon PV: Discrete subcellular localization of a cytoplasmic and a mitochondrial isoenzyme of creatine kinase in intestinal epithelial cells. Cell Motil Cytoskeleton 19: 169–179, 1991

    PubMed  Google Scholar 

  179. Gordon PV, Keller TCS: Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells. Cell Motil Cytoskel 21: 38–45 1992

    Google Scholar 

  180. Thalmann R, Miyoshi T, Thalmann I: The influence of ischemia upon energy reserves of inner ear tissue. Laryngoscope 82: 2249–2272, 1972

    PubMed  Google Scholar 

  181. Spicer SS, Schulte BA: Creatine kinase in epithelium of the inner ear. J Histochem Cytochem 40: 185–192, 1992

    PubMed  Google Scholar 

  182. Loike JD, Cao L, Brett J, Ogawa S, Silverstein SC, Stern D: Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol 263: C326-C333, 1992

    PubMed  Google Scholar 

  183. Bastin J, Cambon N, Thomson M, Lowry OH, Burch HB: Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Internatl 31: 1239–1247, 1987

    Google Scholar 

  184. Ikeda K: Localization of brain-type creatine kinase in kidney epithelial cell subpopulations in rat. Experientia 44: 734–735, 1988

    PubMed  Google Scholar 

  185. Friedman DL, Parryman MB: Compartmentation of multiple forms of creatine kinase in the distal nephron of the rat kidney. J Biol Chem 266: 22404–22410, 1991

    PubMed  Google Scholar 

  186. Friedman DL, Roberts R: Purification and localization of braintype CK in sodium chloride transporting epithelia of the spiny dogfish,Squalus acanthias. J Biol Chem 267: 4270–4277, 1992

    PubMed  Google Scholar 

  187. Epstein FH, Stoff JS, Silvia P: Mechanism and control of hyperosmotic NaCl-rich secretion by the rectal gland ofSqualus acanthias. J Exp Biol 106: 25–41, 1983

    PubMed  Google Scholar 

  188. Berlet HH, Bonsmann I, Birringer H: Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue. Biochim Biophys Acta 437: 166–174, 1976

    PubMed  Google Scholar 

  189. Gosh A, Ronner P, Cheong E, Khalid P, Matschinsky FM: The role of ATP and free ADP in metabolic coupling during fuelstimulated insulin release from islet β-cells in the isolated perfused rat pancreas. J Biol Chem 266: 22887–22892, 1991

    PubMed  Google Scholar 

  190. White KC, Babbitt PC, Buechter DD, Kenyon GL: The principle islet of the Coho Salmon (Oncorhyncus kisutch) contains the BB isoenzyme of creatine kinase. J Prot Chem 11: 489–494, 1992

    Google Scholar 

  191. Aired S, Creach Y, Palevody C, Esclassan J, Hollande E: Creatine phosphate as energy source in the cerulein-stimulated rat pancreas: study by31P nuclear magnetic resonance. Int J Pancreatol 10: 81–95, 1991

    PubMed  Google Scholar 

  192. Perriard JC, Rosenberg UB, Wallimann T, Eppenberger HM, Caravatti M: The switching of creatine kinase gene expression during myogenesis. In: ML Pearson, HF Epstein (eds) Monograph on Muscle Development: Molecular and Cellular Control. Cold Spring Harbor, 1982, pp 237–245

  193. Graig FA, Smith JC: Creatine phosphokinase in thyroid: isoenzyme composition compared with other tissues. Science 156: 254–255, 1967

    PubMed  Google Scholar 

  194. Kanemitsu F, Kawanishi I, Mizushima J: Characteristics of mitochondrial creatine kinases from normal human heart and liver tissues. Clin Chim Acta 119: 307–317, 1982

    PubMed  Google Scholar 

  195. Wyss M, Wallimann T, Köhrle J: Selective labelling and inactivation of creatine kinase isoenzymes by the thyroid hormone analogue N-bromoacetyl-3,3′,5-triiodo-L-thyronine. Biochem J 291: 463–472, 1993

    PubMed  Google Scholar 

  196. Kvam BJ, Pollesello P, Vittur F, Paoletti S:31P-NMF-studies of resting zone cartilage from growth plate. Magn Res Med 25: 355–361, 1992

    Google Scholar 

  197. Shapiro IM, Debolt K, Funanage VL, Smith S, Tuan RS: Developmental regulation of creatine kinase activity in cells of the epiphyseal growth cartilage. J Bone Mineral Res 7: 493–500, 1992

    Google Scholar 

  198. Sömjen D, Weisman Y, Mor Z, Harell A, Kaye AM: Regulation of proliferation of rat cartilage and bone by sex steroid hormones. J Steroid Biochem Mol Biol 40: 717–723, 1991

    PubMed  Google Scholar 

  199. Sömjen D, Kaye AM, Binderman I: 24R,25-dihydroxyviototine D stimulates creatine kinase BB activity in chick cartilage cells in culture. FEBS Lett 167: 281–284, 1984

    PubMed  Google Scholar 

  200. Funanage VL, Carango P, Shapiro IM, Tokuoka T, Tuan RS: Creatine kinase activity is required for mineral deposition and matrix synthesis in endochondral growth cartilage. Bone and Mineral 17: 228–236, 1992

    PubMed  Google Scholar 

  201. Sömjen D, Weisman Y, Binderman I, Kaye AM: Stimulation of creatine kinase BB activity by 1α,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol in rat tissues Biochem J 219: 1037–1041, 1984

    PubMed  Google Scholar 

  202. Sömjen D, Kaye AM, Binderman I: Stimulation of creatine kinase BB activity by parathyroid hormone and by prostaglandin E2 in cultured bone cells. Biochem J 225: 591–596, 1985

    PubMed  Google Scholar 

  203. Sömjen D, Weisman Y, Harell A, Berger E, Kaye AM: Direct and sex-specific stimulation by sex steroids of creatine kinase activity and DNA synthesis in rat bone. Proc Natl Acad Sci USA 86: 3361–3365, 1989

    PubMed  Google Scholar 

  204. DeChatelet LR, McCall CE, Shirley PS: Creatine phosphokinase activity in rabbit alveolar macrophages. Infection and Immunity 7: 29–34, 1973

    PubMed  Google Scholar 

  205. Loike JD, Kozler VF, Silverstein SC: Creatine kinase expression and creatine phosphate accumulation are developmentally regulated during differentiation of mouse and human monocytes. J Exp Med 159: 746–757, 1984

    PubMed  Google Scholar 

  206. Loike JD, Somes M, Silverstein SC: Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol 251: C128-C135, 1986

    PubMed  Google Scholar 

  207. Guimbal C, Kilimann MW: A Na+-dependent creatine transporter in rabbit brain, muscle, heart and kidney. cDNA cloning and functional expression. J Biol Chem 268: 8418–8421, 1993

    PubMed  Google Scholar 

  208. Loike JD, Kozler VF, Silverstein SC: Increased ATP and creatine phosphate turnover in phagocytosing mouse peritoneal macrophages. J Biol Chem 254: 9558–9564, 1979

    PubMed  Google Scholar 

  209. Shibata S, Kobayashi B: Blood platelets as a possible source of creatine kinase in rat plasma and serum. Thromb Haemost 39: 701–706, 1978

    PubMed  Google Scholar 

  210. Shibata S: Creatine phosphate in rat blood platelets. Thromb Haemost 39: 707–711, 1978

    PubMed  Google Scholar 

  211. Matsui S, Watanabe Y, Kobayashi B: Preferential disappearance of aerobically generated ATP from platelets during thrombin-induced aggregation. Thromb Diath Haemorrh 32: 441–456, 1974

    PubMed  Google Scholar 

  212. Feld RD, Witte DL: Presence of creatine kinase BB isoenzyme in some patients with prostatic carcinoma. Clin Chem 23: 1930–1932, 1977

    PubMed  Google Scholar 

  213. Gazdar AF, Sweig MH, Carney DN, VanSteirten AC, Baylin SB, Minna JD: Levels of creatine kinase and its BB isoenzyme in lung cancer specimens and cultures. Cancer Res 41: 2773–2777, 1981

    PubMed  Google Scholar 

  214. World LE, Li C-Y, Homburger HA: Localization of the B and M polypeptide subunits of creatine kinase in normal and neoplastic human tissues by an immuno peroxidase technique. Am J Clin Pathol 75: 327–332, 1981

    PubMed  Google Scholar 

  215. Tsung SH: Creatine kinase activity and isoenzyme pattern in various normal tissues and neoplasms. Clin Chem 29: 2040–2043, 1983

    PubMed  Google Scholar 

  216. Scambia G, Santeusanio G, Panici PB, Iacobelli S, Mancuso S: Immunohistochemical localization of creatine kinase BB in primary cancer: correlation with estrogen receptor content. J Cancer Res Clin Oncol 114: 101–104, 1988

    PubMed  Google Scholar 

  217. Silverman LM, Dermer GB, Zweig MH, VanSteirteghem AC, Tökes ZA: Creatine kinase BB: a new tumor-associated marker. Clin Chem 25: 1432–1435, 1979

    PubMed  Google Scholar 

  218. Miller E, Evans AE, Cohn M: Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc Natl Acad Sci USA 90: 3304–3308, 1993

    PubMed  Google Scholar 

  219. Lillie JW, O'Keefe M, Valinski H, Hamlin A, Varban ML, Kaddurah-Daouk R: Cyclocreatine inhibits growth of a broad spectrum of cancer cells derived from solid tumors. Cancer Res 53: 3172–3178, 1993

    PubMed  Google Scholar 

  220. Pratt R, Vallis LM, Lim CW, Chisnall WN: Mitochondrial creatine kinase in cancer patients. Pathol 19: 162–165, 1987

    Google Scholar 

  221. DeLuca M, Hall N, Rice R, Kaplan NO: Creatine kinase isoenzymes in human tumors. Biochem Biophys Res Commun 99: 189–195, 1981

    PubMed  Google Scholar 

  222. Kanemitsu F, Kawanishi I, Mizushima J, Okigaki T: Mitochondrial creatine kinase as a tumor associated marker. Clin Chim Acta 138: 175–183, 1984

    PubMed  Google Scholar 

  223. Kaddurah-Daouk R, Lillie JW, Daouk GH, Green MR, Kingston R, Schimmel P: Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus Ela. Mol Cell Biol 10: 1476–1483, 1990

    PubMed  Google Scholar 

  224. Lang H: Creatine kinasae isoenzymes: Pathophysiology and clinical application. In: H Lang (ed.). Springer Verlag, New York, 1981

    Google Scholar 

  225. Ch'ng JLC, Ibrahim B: Transcriptional and posttranscriptional mechanisms modulate creatine kinase expression during differentiation of osteoblast cells. J Biol Chem 269: 2336–2341, 1994

    PubMed  Google Scholar 

  226. Ch'ng JLC, Shoemaker DL, Schimmel P, Holmes EW: Reversal of CK translational repression by 3′-untranslaed sequences. Science 248: 1003–1006, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

M-CK, B-CK and Mi-CK refer to muscle-type, brain-type and mitochondrial-type creatine kinase, respectively, with the cytosolic isoforms MM-, MB- and BB-CK forming dimers and Mi-CK forming dimers as well as octamers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallimann, T., Hemmer, W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133, 193–220 (1994). https://doi.org/10.1007/BF01267955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267955

Key words

Navigation