Skip to main content
Log in

Distributive laws for concept lattices

  • Published:
algebra universalis Aims and scope Submit manuscript

Abstract

We study several kinds of distributivity for concept lattices of contexts. In particular, we find necessary and sufficient conditions for a concept lattice to be

  1. (1)

    distributive,

  2. (2)

    a frame (locale, complete Heyting algebra),

  3. (3)

    isomorphic to a topology,

  4. (4)

    completely distributive,

  5. (5)

    superalgebraic (i.e., algebraic and completely distributive).

In cases (2), (4) and (5), our criteria are first order statements on objects and attributes of the given context. Several applications are obtained by considering the completion by cuts and the completion by lower ends of a quasiordered set as special types of concept lattices. Various degrees of distributivity for concept lattices are expressed by certain “separation axioms” for the underlying contexts. Passing to complementary contexts makes some statements and proofs more elegant. For example, it leads to a one-to-one correspondence between completely distributive lattices and so-called Cantor lattices, and it establishes an equivalence between partially ordered sets and doubly founded reduced contexts with distributive concept lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandroff, P.,Diskrete Räume. Mat. Sbornik (N.S.)2 (1937), 501–518.

    Google Scholar 

  2. Ball, R. N.,Distributive Cauchy lattices. Algebra Universalis18 (1984), 134–174.

    Google Scholar 

  3. Banaschewski, B. andHoffmann, R.-E. (eds.),Continuous lattices, Proc. Bremen 1979. Lecture Notes in Math.871, Springer-Verlag, Berlin1981.

    Google Scholar 

  4. Bandelt, H.-J.,Regularity and complete distributivity. Semigroup Forum19 (1980), 123–126.

    Google Scholar 

  5. Bandelt, H.-J., ℳ-distributive lattices. Arch. Math.39 (1982), 436–442.

    Google Scholar 

  6. Bandelt, H.-J.,Coproducts of bounded (α, β)-distributive lattices. Algebra Universalis17 (1983), 92–100.

    Google Scholar 

  7. Bandelt, H.-J. andErné, M.,Representations and embeddings of ℳ-distributivelattices. Houston J. Math.10 (1984), 315–324.

    Google Scholar 

  8. Birkhoff, G.,Lattice theory. Amer. Math. Soc. Coll. Publ.25, 3rd ed., Providence, R.I. 1973.

  9. Bruns, G.,Verbandstheoretische Kennzeichnung vollständiger Mengenringe. Arch. Math. (Basel)10 (1954), 109–112.

    Google Scholar 

  10. Büchi, J. R.,Representations of complete lattices by sets. Portugal. Math.11 (1952), 151–167.

    Google Scholar 

  11. Crawley, P.,Regular embeddings which preserve lattice structure. Proc. Amer. Math. Soc.13 (1962), 748–752.

    Google Scholar 

  12. Crawley, P. andDilworth, R. P.,Algebraic theory of lattices. Prentice-Hall Inc., Englewood Cliffs, N.J. 1973.

    Google Scholar 

  13. Erné, M.,Verallgemeinerungen der Verbandstheorie. Preprint No.109 and Habilitationsschrift, University of Hannover 1980.

  14. Erné, M.,Scott convergence and Scott topology in partially ordered sets II. In [3], 61–96.

  15. Erné, M.,Homomorphisms of ℳ-generated and ℳ-distributive posets. Preprint No.125, University of Hannover 1981.

  16. Erné, M.,Distributivgesetze und die Dedekindsche Schnittvervollständigung. Abh. Braunschweig. Wiss. Ges.33 (1982), 117–145.

    Google Scholar 

  17. Erné, M.,The ABC of order and topology. In: H. Herrlich and H.-E. Porst (eds.),Category theory at work. Heldermann, Berlin 1991, 57–83.

    Google Scholar 

  18. Erné, M.,The Dedekind-MacNeille completion as a reflector. Preprint1183, Techn. Hochschule Darmstadt 1988, and Order5 (1991), 159–173.

    Google Scholar 

  19. Erné, M.,Bigeneration in complete lattices and principal separation in partially ordered sets. Preprint1182, Techn. Hochschule Darmstadt 1988, and Order8 (1991), 197–221.

    Google Scholar 

  20. Erné, M. andWilke, G.,Standard completions for quasiordered sets. Semigroup Forum27 (1983), 351–376.

    Google Scholar 

  21. Ganter, B., Wille, R. andWolff, H. E. (eds.),Beiträge zur Begriffsanalyse B. I. Wissenschaftsverlag, Mannheim 1987.

    Google Scholar 

  22. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. andScott, D. S.,A compendium of continuous lattices. Springer-Verlag, Berlin 1980.

    Google Scholar 

  23. Hickman, R. C. andMonro, G. P.,Distributive partially ordered sets. Fund. Math.CXX (1984), 151–166.

    Google Scholar 

  24. Hoffmann, R.-E.,Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. In [3], 159–208.

  25. Hofmann, K. H. andMislove, M.,Local compactness and continuous lattices. In [3], 209–248.

  26. Katrinak, T.,Pseudokomplementäre Halbverbände. Mat. Časopis18 (1968), 121–143.

    Google Scholar 

  27. Kříž, I. andPultr, A.,A spatiality criterion and an example of a quasitopology which is not a topology. Houston J. Math.15 (1989), 215–234.

    Google Scholar 

  28. Lawson, J. D.,The duality of continuous posets. Houston J. Math.5 (1979), 357–386.

    Google Scholar 

  29. MacNeille, H. M.,Partially ordered sets. Trans. Amer. Math. Soc.42 (1937), 416–460.

    Google Scholar 

  30. Monjardet, B. andWille, R.,On finite lattices generated by their doubly irreducible elements. Discr. Math.73 (1989), 163–164.

    Google Scholar 

  31. Nachbin, L.,Topology and order. Van Nostrand, Princeton 1965.

    Google Scholar 

  32. Priestley, H. A.,Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. (3)24 (1972), 507–530.

    Google Scholar 

  33. Raney, G. N.,Completely distributive complete lattices. Proc. Amer. Math. Soc.3 (1952), 677–680.

    Google Scholar 

  34. Raney, G. N.,A subdirect union representation for completely distributive complete lattices. Proc. Amer. Math. Soc.4 (1953), 518–522.

    Google Scholar 

  35. Schein, B. M.,Regular elements of the semigroup of all binary relations. Semigroup Forum13 (1976), 95–102.

    Google Scholar 

  36. Wille, R.,Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.),Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470.

    Google Scholar 

  37. Wille, R.,Subdirect decomposition of concept lattices. Algebra Universalis17 (1983), 275–287.

    Google Scholar 

  38. Wille, R.,Tensorial decomposition of concept lattices. Order2 (1985), 81–95.

    Google Scholar 

  39. Zaretzkii, K. A.,The semigroup of binary relations. Mat. Sbornik61 (1963), 291–305 [Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erné, M. Distributive laws for concept lattices. Algebra Universalis 30, 538–580 (1993). https://doi.org/10.1007/BF01195382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195382

AMS Mathematics Subject Classification 1991

Key words and phrases

Navigation