Skip to main content
Log in

Cyclic chronopotentiometric studies of the LiAl anode in methyl acetate

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The applicability of methyl acetate as a solvent for ambient temperature lithium secondary batteries was investigated using cyclic chronopotentiometry. Methyl acetate was found to be stable towards lithium-aluminium alloys and cycling up to more than 300 cycles was obtained with about 90% cycling efficiency. Water and other organic impurities have been identified in methyl acetate and a thorough purification procedure has been used to reduce these to acceptable levels. LiAsF6, LiPF6, LiClO4 and LiBF4 were investigated for use as supporting electrolytes and LiAsF6 was found to be the best in terms of cycling efficiency, longer cycling numbers and yielding the lowest corrosion capacity loss rate. The development of the LiAl anode upon cycling was observed in parallel with the reduction in nucleation polarization potential, the increase in cycling efficiency, the lowering of concentration polarization at the electrode surface and the more ready acceptance of lithium deposition at the developed electrode. The optimum conditions for the development of the LiAl anode were found to exist at a current density of 5 mA cm−2 and a charge density of 0.5 C cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S. Baranski and W. R. Fawcett,J. Electrochem. Soc. 129 (1982) 901.

    Google Scholar 

  2. A. N. Dey,J. Electrochem. Soc. 118 (1971) 1547.

    Google Scholar 

  3. R. Selim and P. Bro,J. Electrochem. Soc. 121 (1974) 1457.

    Google Scholar 

  4. R. D. Rauh, T. F. Reise and S. B. Brummer,J. Electrochem. Soc. 125 (1978) 186.

    Google Scholar 

  5. R. D. Rauh and S. B. Brummer,Electrochim. Acta 22 (1977) 75.

    Google Scholar 

  6. S. G. Meibuhr,J. Electrochem. Soc. 117 (1970) 56.

    Google Scholar 

  7. V. R. Koch and S. B. Brummer,Electrochim. Acta 23 (1978) 55.

    Google Scholar 

  8. E. J. Frazer,J. Electroanal. Chem. 121 (1981) 329.

    Google Scholar 

  9. I. Epelboin, M. Froment, M. Garreau, J. Thevenin and D. Warin,J. Electrochem. Soc. 127 (1980) 2100.

    Google Scholar 

  10. S. I. Tobishima and T. Okada,J. Applied Electrochem. 15 (1985) 317.

    Google Scholar 

  11. G. H. Newman, R. W. Francis, L. H. Gaines and B. M. L. Rao,J. Electrochem. Soc. 127 (1980) 2025.

    Google Scholar 

  12. T. R. Jow and C. C. Liang,J. Electrochem. Soc. 129 (1982) 1429.

    Google Scholar 

  13. A. N. Dey and E. J. Rudd,J. Electrochem. Soc. 121 (1974) 1294.

    Google Scholar 

  14. V. R. Koch,J. Electrochem. Soc. 126 (1979) 181.

    Google Scholar 

  15. V. R. Koch and J. H. Young,J. Electrochim. Soc. 125 (1978) 1371.

    Google Scholar 

  16. J. L. Goldman, R. M. Mank, J. H. Young and V. R. Koch,J. Electrochem. Soc. 127 (1980) 1461.

    Google Scholar 

  17. P. G. Glugla,J. Electrochem. Soc. 130 (1983) 113.

    Google Scholar 

  18. R. D. Rauh and S. B. Brummer,Electrochim. Acta 22 (1977) 85.

    Google Scholar 

  19. F. W. Dampier and S. B. Brummer,Electrochim. Acta 22 (1977) 1339.

    Google Scholar 

  20. J. S. Foos and J. McVeigh,J. Electrochem. Soc. 130 (1983) 628.

    Google Scholar 

  21. V. R. Koch,J. Power Souces 6 (1981) 357.

    Google Scholar 

  22. S. B. Brummer, ‘Extended Abstracts’, Int. Meeting on Lithium Batteries, Rome, Italy, No. 1 (1982).

  23. F. D. Dousek, J. Jansta and J. Riha,J. Electroanal. Chem. 46 (1973) 281.

    Google Scholar 

  24. M. W. Rupich, L. Pitts and K. M. Abraham,J. Electrochem. Soc. 129 (1982) 1857.

    Google Scholar 

  25. J. O. Besenhard,J. Electroanal. Chem. 94 (1978) 77.

    Google Scholar 

  26. H. C. Lai, Electrochemical Studies of the Lithium-Aluminium Anode in Methyl Acetate, M. Phil. Thesis, University of Hong Kong (1986).

  27. J. O. Besenhard and G. Eichinger,J. Electroanal. Chem. 68 (1976) 1.

    Google Scholar 

  28. R. P. Elliott, ‘Constitution of Binary Alloys’, 1st supplement, McGraw-Hill, New York (1965) p. 42.

    Google Scholar 

  29. M. Hansen, ‘Constitution of Binary Alloys’, McGraw-Hill, New York (1958) pp. 104–105.

    Google Scholar 

  30. F. A. Shunk, ‘Constitution of Binary Alloys’, 2nd supplement, McGraw-Hill, New York (1969) pp. 27–28.

    Google Scholar 

  31. G. Nazri and R. H. Muller,J. Electrochem. Soc. 132 (1985) 2050.

    Google Scholar 

  32. J. R. Selman, D. K. NeNuccio, C. J. Sy and R. K. Steunenberg,J. Electrochem. Soc. 124 (1977) 1160.

    Google Scholar 

  33. J. R. Wasson and D. K. Hoffman, ‘Proc. Symp. on Power Sources for Biomedical Implantable Applications and Ambient Temp. Lithium Batteries’ (1980) Vol. 80–4, p. 309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, Y.S., Lai, H.C. Cyclic chronopotentiometric studies of the LiAl anode in methyl acetate. J Appl Electrochem 19, 239–246 (1989). https://doi.org/10.1007/BF01062307

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062307

Keywords

Navigation