Skip to main content
Log in

Abstract

A methodology and mathematical formulation are presented for development of the global geochemical cycles of trace metals. Global cycling models of As, Se, and Hg are discussed in detail and used to assess the impact of the activities of society on these element cycles. These models show that anthropogenic activities may have increased the global concentrations of these elements in rain, seawater, and perhaps in river water. Model calculations suggest that increased concentrations of these elements in the world's surface ocean by the year 2000 will be small. A two-reservoir, cycling model of trace metals in atmospheric particulates is developed and used to assess the sources of element enrichments in these particulates. The model enables prediction of trace metal enrichment factors in atmospheric particulates, where enrichment factor is defined as the metal/Al ratio in atmospheric particulates divided by the metal/Al ratio in soils. Correspondence between predicted and observed enrichment factors suggests that for some trace metals, their enrichments in atmospheric particulates are caused, at least in part, by the industrial and fossil fuel burning activities of society. Model calculations further show that cessation of these activities would result in a return of present-day or future enrichment factors to preindustrial values in less than one year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Erreish, G. M., Whitehead, E. I., and Olson, O. E., 1968, Evolution of volatile selenium from soils: Soil Science, v. 106, p. 415–420.

    Google Scholar 

  • Andren, A. W., Klein, D. H., and Talmi, Y., 1975, Selenium in coal—fired steam plant emissions: Environ. Sci. Technol., v. 9, p. 856–858.

    Google Scholar 

  • Arsenic, 1977, Natl. Acad. Sci., Washington, D. C., 332 p.

  • Beauford, W., Barber, J., and Barringer, A. R., 1975, Heavy metal release from plants into the atmosphere: Nature, v. 256, p. 35–37.

    Google Scholar 

  • Beauford, W., Barber, J., and Barringer, A. R., 1977, Release of particles containing metals from vegetation into the atmosphere: Science, v. 195, p. 571–573.

    Google Scholar 

  • Bertine, K. K. and Goldberg, E. D., 1971, Fossil fuel combustion and the major sedimentary cycle: Science, v. 173, p. 233–235.

    Google Scholar 

  • Bolton, N. E., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Hulett, L. D., and Lyon, W. S., 1975, Trace element mass balance around a coal-fired steam plant,in Babu, S. P. (Ed.), Trace elements in fuel: Adv. Chem. Ser. 141, ACS, Washington, D. C., p. 175–187.

    Google Scholar 

  • Bowen, H. J. M., 1966, Trace elements in biochemistry, Academic Press, London, 241 p.

    Google Scholar 

  • Braman, R. S. and Foreback, C. C., 1973, Methylated forms of arsenic in the environment: Science, v. 182, p. 1247–1249.

    Google Scholar 

  • Braman, R. S., 1975, Arsenic in the environment,in Woolson, E. A. (Ed.), Arsenical pesticides: ACS Symposium Series 7, Washington, D. C., p. 108–123.

  • Broecker, W. S., 1963, Radioisotopes and large-scale oceanic mixing,in Hill, M. N. (Ed.), The Sea, vol. 2: Wiley-Interscience, New York, p. 88–108.

    Google Scholar 

  • Broecker, W. S., 1971, A kinetic model for the chemical composition of sea water: Quaternary Res., v. 1, p. 188–207.

    Google Scholar 

  • Broecker, W. S., 1974, Chemical oceanography: Harcourt Brace Jovanovich, Inc., New York, 214 p.

    Google Scholar 

  • Broecker, W. S., Li, Y., and Peng, T., 1971, Carbon dioxide—man's unseen artifact,in Hood, D., (Ed.), Impingement of man on the oceans: Wiley-Interscience, John Wiley and Sons, Inc., New York, p. 287–324.

    Google Scholar 

  • Cadle, R., 1975, Volcanic emissions of halides and sulfur compounds to the troposphere and stratosphere: J. Geophys. Res., v. 80, p. 1650–1652.

    Google Scholar 

  • Chau, Y. K., Wong, P. T. S., Silverberg, B. A., Luxon, P. L., and Bengert, G. A., 1976, Methylation of selenium in the aquatic environment: Science, v. 192, p. 1130–1131.

    Google Scholar 

  • Chester, R. and Stoner, J. H., 1974, The distribution of Mn, Fe, Cu, Ni, Co, Ga, Cr, V, Ba, Sr, Sn, Zn, and Pb in some soil-sized particulates from the lower troposphere over the world ocean: Mar. Chem., v. 2, p. 157–188.

    Google Scholar 

  • Coakley, G. J., 1975, Selenium,in Knoerr, A. W. (Ed.), Mineral facts and problems: U.S. Bur. of Mines Bull. 667, p. 955–961.

    Google Scholar 

  • Cox, D. P., 1975, Microbiological methylation of arsenic,in Woolson, E. A. (Ed.), Arsenical pesticides: ACS Symposium Series 7, Washington, D. C., p. 81–96.

  • Craig, H., 1957, The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea: Tellus, v. 9, p. 1–17.

    Google Scholar 

  • Crecelius, E. P., 1975, The geochemical cycle of arsenic in Lake Washington and its relation to other elements: Limnol. Oceanog., v. 20, p. 441–451.

    Google Scholar 

  • Dams, R., Heindryckz, R., and Van Cauwenberghe, K., 1973, Scheikunde en analyse van luchtpollutie, Deel III, Appendices: Ind. Chim. Belg., v. 38, p. 627–648.

    Google Scholar 

  • Dams, R. and DeJonge, J., 1976, Chemical composition of Swiss aerosols from the Jungfraujoch: Atmos. Environ., v. 10, p. 1079–1084.

    Google Scholar 

  • Davison, R. L., Natusch, D. F. S., Wallace, J. R., and Evans, C. A., Jr., 1974, Trace elements in fly ash. Dependence of concentration on particle size: Environ. Sci. Technol., v. 8, p. 1107–1113.

    Google Scholar 

  • Deevey, E. S., Jr., 1970, Mineral cycles: Sci. Amer., v. 223, p. 149–158.

    Google Scholar 

  • D'Itri, F. M. (Ed.), 1978, An assessment of mercury in the environment, Natl. Acad. Sci., Washington, D. C., 185 p.

  • Doran, J. W. and Alexander, M., 1976, Microbial formation of volatile selenium compounds in soil: Soil Sci. Soc. Amer. Jour., v. 40, p. 687–690.

    Google Scholar 

  • Duce, R. A., Hoffman, G. L., and Zoller, W. H., 1975, Atmospheric trace metals at remote northern and southern hemispheric sites: Pollution or natural?: Science, v. 187, p. 59–61.

    Google Scholar 

  • Duce, R. A., Hoffman, G. L., Ray, B. J., Fletcher, I. S., Walsh, P. R., Fasching, J. L., Piotrowicz, S. R., Hoffman, E. J., Miller, J. M., and Heffter, J. L., 1976a, Trace metals in the marine atmosphere: Sources and fluxes,in Windom, H., and Duce, R. (Eds.), Marine pollutant transfer: D. C. Heath and Co., Lexington, Massachusetts, p. 77–120.

    Google Scholar 

  • Duce, R. A., Ray, B. J., Hoffman, G. L., and Walsh, P. R., 1976b, Trace metal concentration as a function of particle size in marine aerosols from Bermuda: Geophys. Res. Lett., v. 3, p. 339–342.

    Google Scholar 

  • Eriksson, E., 1971, Compartment models and reservoir theory: Ann. Rev. Ecology Systematics, v. 2, p. 67–84.

    Google Scholar 

  • Ferguson, J. F. and Gavis, J., 1972, A review of the arsenic cycle in natural waters: Water Res., v. 6, p. 1259–1274.

    Google Scholar 

  • Garrels, R. M. and Mackenzie, F. T., 1971, Evolution of sedimentary rocks: W. W. Norton and Co., Inc., New York, 397 p.

    Google Scholar 

  • Garrels, R. M. and Mackenzie, F. T., 1972, A quantitative model for the sedimentary rock cycle: Mar. Chem., v. 1, p. 27–41.

    Google Scholar 

  • Garrels, R. M., Mackenzie, F. T., and Hunt, C., 1973, Chemical cycles and the global environment: Assessing human influences: William Kaufmann, Inc., Los Angeles, California, 206 p.

    Google Scholar 

  • Goldberg, E. D., 1971, Atmospheric dust, the sedimentary cycle, and man: Geophysics, v. 1, p. 117–132.

    Google Scholar 

  • Goldberg, E. D., 1976, Rock volatility and aerosol composition: Nature, v. 260, p. 128–129.

    Google Scholar 

  • Greenspoon, G., 1970, Mercury,in Mineral facts and problems: U.S. Bur. Mines Bull. 650, p. 639–652.

    Google Scholar 

  • Hartley, W. J. and Grant, A. B., 1961, A review of selenium responsive diseases of New Zealand livestock: Fed. Proc., v. 20, pt. 1, p. 679–688.

    Google Scholar 

  • Harvey, S. C., 1970, Heavy metals,in Goodman, L. S. and Gilman, A. (Eds.), The pharmacological basis of therapeutics, 4th ed.: Macmillan and Co., New York, p. 958–986.

    Google Scholar 

  • Hashimoto, Y. and Winchester, J. W., 1967, Selenium in the atmosphere: Environ. Sci. Technol., v. 1, p. 338–340.

    Google Scholar 

  • Heath, G. R., 1974, Dissolved silica and deep-sea sediments,in Hay W. W. (Ed.), Studies in paleo-oceanography: Soc. Econ. Paleontol. Mineral. Spec. Pub. 20, Tulsa, Oklahoma, p. 77–93.

  • Holeman, J. N., 1968, The sediment yield of major rivers of the world: Water Res. Res., v. 4, p. 737–747.

    Google Scholar 

  • Howard, J. H., III, 1977, Geochemistry of selenium: Formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits: Geochim. Cosmochim. Acta, v. 41, p. 1665–1678.

    Google Scholar 

  • Johnson, D. L., 1972, Bacterial reduction of arsenate in sea water: Nature, v. 240, p. 44–45.

    Google Scholar 

  • Johnson, D. L. and Braman, R. S., 1974, Distribution of atmospheric mercury species near ground: Environ. Sci. Technol., v. 8, p. 1003–1009.

    Google Scholar 

  • Judson, S., 1968, Erosion of the land: Am. Scientist, v. 56, p. 356–374.

    Google Scholar 

  • Kanamori, S. and Sugawara, K., 1965, Geochemical study of arsenic in natural waters. I. Arsenic in rain and snow: J. Earth Sci., Nagoya Univ., v. 13, p. 23–35.

    Google Scholar 

  • Kharkar, D. P., Turekian, K. K., and Bertine, K. K., 1968, Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rubidium, and cesium to the oceans: Geochim. Cosmochim. Acta, v. 32, p. 285–298.

    Google Scholar 

  • Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Van Hook, R. I., and Bolton, N., 1975, Pathways of thirty-seven trace elements through a coal-fired power plant: Environ. Sci. Technol., v. 9, p. 973–979.

    Google Scholar 

  • Krauskopf, K. B., 1967, Introduction to geochemistry, McGraw-Hill Book Co., New York, 721 p.

    Google Scholar 

  • Kothny, E. L., 1973, The three-phase equilibrium of mercury in nature,in Kothny, E. L. (Ed.), Trace elements in the environment: Adv. Chem. Ser. 123, ACS, Washington, D. C., p. 48–80.

    Google Scholar 

  • Kuznets, S., 1971, Economic growth of nations: Total output and production structure: Harvard Univ. Press, Cambridge, Massachusetts, 363 p.

    Google Scholar 

  • Lakin, H. W., 1972, Selenium accumulation in soils and its absorption by plants and animals: Geol. Soc. Amer. Bull., v. 83, p. 181–190.

    Google Scholar 

  • Lakin, H. W., 1973, Selenium in our environment,in Kothny, E. L. (Ed.), Trace elements in the environment: Adv. Chem. Ser. 123, ACS, Washington, D. C., p. 96–111.

    Google Scholar 

  • Lal, D. and Peters, B., 1967, Cosmic ray produced radioactivity on the earth,in Flügge, S. (Ed.), Handbuch der physik, v. 46: Springer-Verlag, Berlin, p. 551–612.

    Google Scholar 

  • Lantzy, R. J., 1978, The cycling behavior of trace metals: Ph.D. thesis, Northwestern University.

  • Lantzy, R. J. and Mackenzie, F. T., in press, Atmospheric trace metals: Global cycles and assessment of man's impact: Geochim. Cosmochim. Acta.

  • Lerman, A., Mackenzie, F. T., and Garrels, R. M., 1975, Modeling of geochemical cycles: Phosphorus as an example,in Whitten, E. H. T. (Ed.), Quantitative studies in the geological sciences: Geol. Soc. Amer. Mem. 142, p. 205–218.

    Google Scholar 

  • Lisitzin, A. P., 1972, Sedimentation in the world's oceans: Soc. Econ. Paleontol. Mineral., Spec. Publ. 17, 218 p.

  • Lunde, G., 1970, Analysis of arsenic and selenium in marine raw materials: J. Sci. Fd. Agric., v. 21, p. 242–247.

    Google Scholar 

  • Machta, L., 1972, The role of the oceans and biosphere in the carbon dioxide cycle,in Pyrssen, D. and Jagner, D. (Eds.), The changing chemistry of the oceans, Almqvist and Wiksell, Stockholm, p. 121–145.

    Google Scholar 

  • Mackenzie, F. T. and Wollast, R., 1977, Sedimentary cycling models of global processes,in Goldberg, E. D. (Ed.), The Sea, v. 5: Wiley-Interscience, New York, p. 739–785.

    Google Scholar 

  • McBride, B. C. and Wolfe, R. S., 1971, Biosynthesis of dimethylarsine by methano-bacterium: Biochemistry, v. 10, p. 4312–4317.

    Google Scholar 

  • Menzel, D. W., 1974, Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter,in Goldberg, E. D. (Ed.), The sea, vol. 5: Wiley-Interscience, New York, p. 659–678.

    Google Scholar 

  • Meybeck, M., 1976, Total mineral dissolved transport by world major rivers: Bull. Sci. Hydrologiques, v. 21, p. 265–284.

    Google Scholar 

  • Milliman, J. D., 1974, Marine carbonates: Springer-Verlag, New York, 375 p.

    Google Scholar 

  • 1973 Minerals Yearbook, vol. 1, Metals, Minerals, and Fuels, 1975: U.S. Dept. Interior, Bureau of Mines, 1383 p.

  • 1974 Minerals Yearbook, vol. 1, Metals, Minerals, and Fuels, 1976: U.S. Dept. Interior, Bureau of Mines, 1451 p.

  • Morgan, R. E. and Weinberg, R., 1972, Computer simulation of world systems: Biogeochemical cycles: Internat. Jour. Environm. Studies, v. 3, p. 103–118.

    Google Scholar 

  • Natusch, D. F. S., Wallace, J. R., and Evans, C. A., Jr., 1974, Toxic trace elements: Preferential concentration in respirable particles: Science, v. 183, p. 202–204.

    Google Scholar 

  • Newell, R. E., Vincent, D. G., and Kidson, J. W., 1969, Interhemispheric mass exchange from meteorological and trace substance observations: Tellus, v. 21, p. 641–647.

    Google Scholar 

  • Oana, S., 1962, Volcanic gases and sublimates from Showashinzan: Bull. Volcanol., v. 24, p. 49–58.

    Google Scholar 

  • Paone, J., 1970, Arsenic: Bureau Mines Bull. v. 650, 479–487.

    Google Scholar 

  • Penrose, W. R., 1974, Arsenic in the marine and aquatic environments: Analysis, occurrence, and significance: CRC Critical Reviews in Environ. Control, v. 4, p. 465–482.

    Google Scholar 

  • Pilson, M. E. Q., 1974, Arsenate uptake and reduction byPacillopora verrucosa: Limnol. Oceanog., v. 19, p. 339–341.

    Google Scholar 

  • Piperno, E., 1975, Trace element emissions: Aspects of environmental toxicology,in Babu, S. P. (Ed.), Trace elements in fuel: Adv. Chem. Ser. 141, ACS, Washington, D. C., p. 192–209.

    Google Scholar 

  • Pytkowicz, R. M., 1971, The chemical stability of the oceans: Oregon State Univ. Dept. Oceanography Tech. Rept. 214, ref. 71–20, 24 p.

  • Pytkowicz, R. M., 1973, The carbon dioxide system in the oceans: Swiss J. Hydrol., v. 35, p. 8–28.

    Google Scholar 

  • Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963, The influence of organisms on the composition of sea water,in Hill, M. N. (Ed.), The sea, vol. 2: Wiley-Interscience, New York, p. 26–77.

    Google Scholar 

  • Ridley, W. P., Dizikes, L. J., and Wood, J. M., 1977, Biomethylation of toxic elements in the environment: Science, v. 197, p. 329–332.

    Google Scholar 

  • Robinson, E. and Robbins, R. C., 1971, Emissions, concentrations and fate of particulate atmospheric pollutants: Amer. Petrol. Instit. Publ. #4076, Menlo Park, California, 123 p.

  • Rosenfeld, I. and Beath, O., A., 1964, Selenium, geobotany, biochemistry, toxicity, and nutrition: Academic Press, New York, 411 p.

    Google Scholar 

  • Sandholm, M., Oksanen, H. E., and Pesonen, L., 1973, Uptake of selenium by aquatic organisms: Limnol. Oceanogr., v. 18, p. 496–499.

    Google Scholar 

  • Sondegaard, E., 1967, Selenium and vitamin E relationships, in Muth, O. H., Oldfield, J. E., and Weswig, P. H. (Eds.), Symposium: Selenium in biomedicine: AVI Publishing Co., Westport, Connecticut, p. 365–381.

    Google Scholar 

  • Stumm, W. (Ed.), 1977, Global chemical cycles and their alteration by man: Report of the Dahlem Workshop on Global Chemical Cycles and Their Alteration by Man, Berlin, 1976: Abakon Verlagsgessellschaft (in Komm.), Berlin, 347 p.

    Google Scholar 

  • Suzuoki, T., 1964, A geochemical study of selenium in volcanic exhalation and sulfur deposits: Bull. Chem. Soc. Japan, v. 37, p. 1200–1206.

    Google Scholar 

  • Svensson, B. H. and Söderlund, R. (Eds.), 1976, Nitrogen, phosphorus and sulphur—global cycles: SCOPE Rept. 7, Ecol. Bull. (Stockholm), 192 p.

  • Turekian, K. K., 1969, The oceans, streams, and atmosphere,in Wedepohl, K. H. (Ed.), Handbook of geochemistry, vol. 1: Springer-Verlag, New York, p. 297–323.

    Google Scholar 

  • Vinogradov, A. P., 1959, The geochemistry of rare and dispersed chemical elements in soils: Consultants Bureau, Inc., New York, 209 p.

    Google Scholar 

  • Walsh, P. R., Duce, R. A., and Fasching, J. L., 1977, Impregnated filter sampling system for collection of volatile arsenic in the atmosphere: Environ. Sci. Technol., v. 11, p. 163–166.

    Google Scholar 

  • Wedepohl, K. H. (Ed.), 1969, Handbook of geochemistry, vol. II-1: Springer-Verlag, New York.

    Google Scholar 

  • Wedepohl, K. H. (Ed.), 1970, Handbook of geochemistry, vol. II-2: Springer-Verlag, New York.

    Google Scholar 

  • Wedepohl, K. H. (Ed.), 1972, Handbook of geochemistry, vol. II-3: Springer-Verlag, New York.

    Google Scholar 

  • Wedepohl, K. H. (Ed.), 1974, Handbook of geochemistry, vol. II-4: Springer-Verlag, New York.

    Google Scholar 

  • Weiss, H. V., Koide, M., and Goldberg, E. D., 1971, Selenium and sulfur in a Greenland ice sheet: Relation to fossil fuel combustion: Science, v. 172, p. 261–263.

    Google Scholar 

  • Whittaker, R. H. and Likens, G. E., 1973, Carbon in the biota,in Woodwell, G. M. and Pecan, E. V. (Eds.), Carbon in the biosphere: AEC Symposium Series 30, National Tech. Information Service, Springfield, Va., p. 281–302.

    Google Scholar 

  • Wolery, T. J. and Sleep, N. H., 1976, Hydrothermal circulation and geochemical flux at midocean ridges: Jour. Geol., v. 84, p. 249–275.

    Google Scholar 

  • Wollast, R., 1974, The silica problem:in The sea, v. 5, E. D. Goldberg, (Ed.), Wiley-Interscience, New York, 359–392.

    Google Scholar 

  • Wollast, R., Billen, G., and Mackenzie, F. T., 1976, Behavior of mercury in natural systems and its global cycle,in McIntyre, A. D., and Mills, C. F. (Eds.), Ecological toxicology research: Plenum Press, New York, p. 145–166.

    Google Scholar 

  • Woodwell, G. M., Craig, P. P., and Johnson, H. A., 1971, DDT in the biosphere: Where does it go?: Science, v. 174, p. 1101–1107.

    Google Scholar 

  • Wood, J. M., 1974, Biological cycles for toxic elements in the environment: Science, v. 183, p. 1049–1052.

    Google Scholar 

  • Woolson, E. A., 1975, Bioaccumulation of arsenicals,in Woolson, E. A. (Ed.), Arsenical pesticides: ACS Symposium Series 7, Washington, D. C., p. 97–107.

  • Zoller, W. H., Gladney, E. S., and Duce, R. A., 1974, Atmospheric concentrations and sources of trace metals at the South Pole: Science, v. 183, p. 199–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, F.T., Lantzy, R.J. & Paterson, V. Global trace metal cycles and predictions. Mathematical Geology 11, 99–142 (1979). https://doi.org/10.1007/BF01028961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028961

Key words

Navigation