Skip to main content
Log in

Deformations of nonassociative algebras and integrable differential equations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

A new class of nonassociative algebras related to integrable PDE's and ODE's is introduced. These algebras can be regarded as a noncommutative generalization of Jordan algebras. Their deformations are investigated. Relationships between such algebras and graded Lie algebras are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Svinolupov, S. L.: On the analogues of the Burgers equations,Phys. Lett. A 135(1) (1989), 32–36.

    Google Scholar 

  2. Svinolupov, S. I.: Jordan algebras and generalized Korteweg-de Vries equations,Teoret. Mat. Phys. 4 (1991), 46–58 (in Russian).

    Google Scholar 

  3. Svinolupov, S. I.: Generalized Schrodinger equations and Jordan pairs,Comm. Math. Phys. 143 (1992), 559–575.

    Google Scholar 

  4. Svinolupov, S. I. and Sokolov, V. V.: Jordan tops and generalization of Lie theorem,Mat. Zametki 3 (1993), 115–121 (in Russian).

    Google Scholar 

  5. Golubchik, I. Z., Sokolov, V. V., and Svinolupov, S. I.: New class of nonassociative algebras and a zeneralized factorization method, Preprint ESI, Vienna 53, 1993.

  6. Calogero, F.: Why are certain nonlinear PDE's both widely applicable and integrable? in V. E. Zakharov (ed.),What is Integrability? Springer-Verlag, Berlin, 1991, pp. 1–62.

    Google Scholar 

  7. Jacobson, N.:Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 30, Amer. Math. Soc., Providence R.I., 1968.

  8. Medina, A.: Sur quelques algèbres symétriques a gauche dont l'algèbre de Lie sous-jacente est resoluble,C. R. Acad. Sci. Paris. Ser. A. 286(3) (1978), 173–176.

    Google Scholar 

  9. Athorn, C. and Fordy, A. P.: Generalized KdV and MKdV equations associated with symmetric spaces,J. Phys. A 20 (1987), 1377–1386.

    Google Scholar 

  10. Svinolupov, S. I. and Sokolov, V. V.: Vector generalizations of classical integrable equations,Teoret. Mat. Fiz. 100(2) (1994), 214–218 (in Russian).

    Google Scholar 

  11. Zhevlakov, K. A., Slin'ko, A. M., Shestakov, I. P., and Shirshov, A.I.:Rings Similar to Assoiative Ones, Nauka, Moscow, 1974 (in Russian).

    Google Scholar 

  12. Osborn, J. M.: Commutative algebras satisfying an identity of degree four,Proc. Amer. Math. Soc. 16(4) (1965), 1114–1120.

    Google Scholar 

  13. Helgason, S.:Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  14. Meyberg, K.: Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren,Math. Zeit. 115(1) (1970), 58–78.

    Google Scholar 

  15. Koecher, M.: Imbedding of Jordan algebras into Lie algebras, 1, 2,Amer. J. Math. 89, 90 (1967), 787–816, (1968) 476–510.

    Google Scholar 

  16. Drinfel'd, V. G.: Hamiltonian structure on the Lie groups and a geometric sense of classical Yang-Bxter equation,Dokl. Acad. Nauk SSSR 268(2) (1983), 285–287 (in Russian).

    Google Scholar 

  17. Semenov-Tian-Shansky, M. A.: What is classical r-matrix?Funkt. Anal. Prilozh. 17(4) (1983), 17–33 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, V.V., Svinolupov, S.I. Deformations of nonassociative algebras and integrable differential equations. Acta Appl Math 41, 323–339 (1995). https://doi.org/10.1007/BF00996121

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996121

Mathematics subject classifications (1991)

Key words

Navigation