Skip to main content
Log in

Triton X-100 extractions of central nervous system myelin indicate a possible role for the minor myelin proteins in the stability of lamellae

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Isolated CNS myelin membranes were extracted with Triton X-100 under conditions previously established for the isolation of cytoskeletal proteins. Treated myelin retained much of its characteristic lamellar structure despite the removal of most of the major myelin basic protein (18.5 kDa) and the proteolipid protein, which together normally constitute 60% of the total myelin protein. The SDS-PAGE profile of this extract residue demonstrated an enrichment in proteins of Mr 30 to 60 kilodaltons (the Wolfgram group). The major myelin proteins were identified by antibodies on Western immunoblots, as were the 2′3′-cyclic nucleotide 3′-phosphodiesterase (CNP), actin, tubulin, myelin-associated glycoprotein (MGP) and the 21.5 kDa MBP. The overall behavior of CNP, the 21.5 kDa MBP, MGP and tubulin towards Triton extraction is reminiscent of the behavior of other membrane-skeletal complexes, supporting the idea that these and other minor myelin proteins might be part of heteromolecular complexes with interactions spanning several lamellae of the myelin sheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agutter, P. S., and Suckling, K. E. 1984. Models of the interactions between membranes and intracellular protein structures. Biochem. Soc. Trans. 12:713–718.

    Google Scholar 

  2. Albertsson, P.-A. 1971. Partition of Cell Particles and Macromolecules. 2nd ed. Pages 58–72. Wiley-Interscience, John Wiley & Sons, Inc., New York.

    Google Scholar 

  3. Ames, B. N., and Dubin, D. T. 1960. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J. Biol. Chem. 2353:769–775.

    Google Scholar 

  4. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D. 1982. Structural organization of myelin—role of lipid-protein interactions determined in model systems. Pages. 1–51,in Jost, P., and Griffith, O. H. (eds.), Lipid-Protein Interactions. John Wiley & Sons, N.Y.

    Google Scholar 

  5. Brady, S. T., Tytell, M., and Lasek, R. J. 1984. Axonal tubulin and axonal microtubules, biochemical evidence for cold stability. J. Cell Biol. 99:1716–1724.

    Google Scholar 

  6. Braun, P. E. 1984. Molecular organization of myelin. Pages 97–116,in Morell, P. (ed.), Myelin 2nd ed., Plenum Press, New York.

    Google Scholar 

  7. Clapshaw, P. A., and Seifert, W. 1980. Effects of detergents, proteins, and lipids on 2′3′-cyclic nucleotide 3′-phosphodiesterase activity. J. Neurochem. 35:164–169.

    Google Scholar 

  8. Cullen, M. J., Peterson, R. G., and Webster, H. deF. 1983. Electron Microscopic study of intramembranous changes in protein-extracted peripheral nervous system myelin. The Anatomical Record 207:563–571.

    Google Scholar 

  9. de Nechaud, B., Wolff, A., Jeantet, C., and Bourre, J-M. 1983. Characterization of tubulin in mouse brain myelin. J. Neurochem. 41:1538–1544.

    Google Scholar 

  10. Dermietzel, R., Schunke, D., and Leibstein, A. 1978. The oligodendrocyte junctional complex. Cell Tiss. Res. 193:61–72.

    Google Scholar 

  11. Endo, T., and Hidaka, H. 1980. Ca+2-calmodulin dependent phosphorylation of myelin isolated from rabbit brain. Biochem. Biophys. Res. Commun. 97:553–558.

    Google Scholar 

  12. Estridge, M. 1977. Polypeptides similar to the α and β subunits of tubulin are exposed on the neuronal surface. Nature (London). 268:60–63.

    Google Scholar 

  13. Franke, W. W., Denk, H., Kalt, R. and Schmid E. 1981. Biochemical and Immunological Identification of Cytokeratin Proteins present in Hepatocytes of Mammalian Liver Tissue. Exp. Cell Res. 131:299–318.

    Google Scholar 

  14. Friede, R. L. 1986. Effect of pH on interlamellar spacing in rat sciatic myelin. Exp. Neurol. 94:368–378.

    Google Scholar 

  15. Golds, E. E., and Braun, P. E. 1978a Cross-linking studies on the conformation and dimerization of myelin basic protein in solution. J. Biol. Chem. 253:8171–8177.

    Google Scholar 

  16. Golds, E. E., and Braun, P. E. 1978b. Protein associations and basic protein conformation in the myelin membrane. J. Biol. Chem. 253:8162–8170.

    Google Scholar 

  17. Hajra, A. K., Seguin, A. B., and Agranoff, B. W. 1968. Rapid labeling of mitochondrial lipids by labeled orthophosphate and ATP. J. Biol. Chem. 243:1609–1616.

    Google Scholar 

  18. Harris, R., and Findlay, J. B. C. 1983. investigations of the organization of the major proteins in bovine myelin membranes. Use of chemical probes and bifunctional crosslinking reagents. Biochim. Biophys. Acta. 732:75–82.

    Google Scholar 

  19. Helenius, A., and Simons, K. 1975. Solubilization of Membranes by Detergents. Biochem. Acta 415:29–79.

    Google Scholar 

  20. Kirschner, D. A., Ganser, A. L., and Caspar, D. L. D. 1984. Diffraction studies of molecular organization and membrane interactions in myelin. Pages 51–91,in Morell, P. ed., Myelin. 2nd ed., Plenum Press, New York.

    Google Scholar 

  21. Lin, L.-F. H., and Lees, M. B. 1982. Interactions of dicyclohexylcarbodiimide with myelin proteolipid. Proc. Natl. Acad. Sci. USA 79:941–945.

    Google Scholar 

  22. Marchesi, V. T. 1983. The red cell membrane skeleton, recent progress. Blood 61:1–11.

    Google Scholar 

  23. Maupin-Szamier, P., and Pollard, T. D. 1978. Actin filament destruction by Osmium Tetroxide. J. Cell Biol. 77:837–852.

    Google Scholar 

  24. Norton, W. T. and Poduslo, S. E. 1973. Myelination in the rat brain: method of myelin isolation. J. Neurochem. 21:749–757.

    Google Scholar 

  25. Pease, D. C. 1983. Supramolecular aggregation and organization in peripheral nerve myelin. J. Ultrastruc. Res. 84:275–288.

    Google Scholar 

  26. Pereyra, P. M., and Braun, P. E. 1983. Studies on subcellular fractionations which are involved in myelin membrane assembly, isolation from developing mouse brain and characterization by enzyme markers, electron microscopy, and electrophoresis. J. Neurochem. 41:957–973.

    Google Scholar 

  27. Pinto da Silva P., and Miller, R. G. 1975. Membrane particles on fracture faces of frozen myelin. Proc. Natl. Acad. Sci. USA. 72:4046–4050.

    Google Scholar 

  28. Reier, P. J., Tabira, T., and Webster H. deF., 1978. Hexachlorophene-induced myelin lesions in the amphibian central nervous system. J. Neurol. Sci. 35:257–274.

    Google Scholar 

  29. Roach, A., Takahashi, N., Pravtcheva, D., Ruddle, F., and Hood, L. 1985. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in Shiverer mutant mice. Cell 42:149–155.

    Google Scholar 

  30. Schnapp, B., and Muganaini, E. 1975. The myelin sheath, electron microscopic studies with thin sections and freeze fracture. Pages 209–233,in Santini, M. ed., Golgi Centennial Symp. Proc. Raven Press, New York.

    Google Scholar 

  31. Schnapp, B., and Mugnaini, E. 1976. Freeze-fracture properties of central myelin in the bullfrog. Neuroscience 1:459–467.

    Google Scholar 

  32. Seagull, R. W., and Heath, I. B. 1979. The effects of tannic acid on the in vivo preservation of microfilaments. Eur. J. Cell Biol. 20:184–188.

    Google Scholar 

  33. Sedzik, J., Toews, A. D., Blaurock, A. E., and Morell, P. 1984. Resistance to disruption of multilamellar fragments of central nervous system myelin. J. Neurochem. 43:1415–1420.

    Google Scholar 

  34. Sims, N. R., Horvath, L. B., and Carnegie, P. R. 1979. Detergent activation and solubilization of 2′3′-cyclic Nucleotide 3′-Phosphodiesterase from isolated myelin and C6 cells. Biochem. J. 181:367–375.

    Google Scholar 

  35. Singer, S. J., and Nicolson, G. L. 1975. The fluid mosaic model of the structure of cell membranes. Science Wash, DC 175:720–731.

    Google Scholar 

  36. Small, J. V., and Langanger, G. 1981. Organization of actin in the leading edge of cultured cells: Influence of Osmium Tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91:695–705.

    Google Scholar 

  37. Smith, R. 1982. Self-association of myelin basic protein: Enhancement by detergents and lipids. Biochemistry 21:2697–2701.

    Google Scholar 

  38. Smith, R., and McDonald B. J. 1979. Association of myelin basic protein with detergent micelles. Biochem. Biophys. Acta. 554:133–147.

    Google Scholar 

  39. Smith, R., Cook J., and Dickens, P. A. 1983. Structure of the proteolipid protein extracted from bovine CNS myelin with non-denaturing detergents. J. Neurochem. 42:306–313.

    Google Scholar 

  40. Starich, G. H., and Dreiling, Ch.E. 1980. Simultaneous inhibition of guinea pig brain 2′3′-cyclic nucleotide 3′-phosphohydrolase and myelin protein synthesis by 2′ adenosine monophosphate. Life Sciences 27:567–572.

    Google Scholar 

  41. Stoner, G. L. 1984. Predicted folding of beta-structure in native myelin basic protein. J. Neurochem. 43:433–447.

    Google Scholar 

  42. Sulakhe, P. V., Petrali, E. H., Davis, E. R., and Thiessen, B. J. 1980. Calcium ion stimulated endogenous protein kinase catalyzed phosphorylation of basic proteins in myelin subfractions and myelin-like membrane fractions from rat brain. Biochemistry 19:5363–5371.

    Google Scholar 

  43. Tabira, T., and Webster H. deF. 1979. E-PTA stains oligodendroglial surface membranes and microtubules in optic nerves during myelination. J. Neurol. Sci. 42:215–227.

    Google Scholar 

  44. Tabira, T., Cullen, M. J., Reier, P. J., and Webster, H. deF. 1978. An experimental analysis of interlamellar tight junctions in amphibian and mammalian C.N.S. myelin. J Neurocytol. 7:489–503.

    Google Scholar 

  45. Takahashi, N., Roach, A., Teplow, D. B., Prusiner, S. B., and Hood, L. 1985. Cloning and characterization of the myelin basic protein gene from mouse: One gene can encode both 14 kd and 18.5 kd MBPs by alternate use of exons. Cell 42:139–148.

    Google Scholar 

  46. Tzagoloff, A., and Penefsky, H. S. 1971. Extraction and purification of lipoprotein complexes from membranes. Pages 219–230in Jakoby, W. B. (ed.), Methods in Enzymology Vol. XXII, Academic Press, N.Y.

    Google Scholar 

  47. Webb, B. C., and Wilson, L. 1980. Cold stable microtubules from brain, Biochemistry 19:1993–2001.

    Google Scholar 

  48. Yu, J., Fischman, D. A., and Steck, T. L. 1973. Selective solubilization of protein and phospholipids from red blood cell membranes by non-ionic detergents. J. Supramol. Struc. 1:233–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereyra, P.M., Horvath, E. & Braun, P.E. Triton X-100 extractions of central nervous system myelin indicate a possible role for the minor myelin proteins in the stability of lamellae. Neurochem Res 13, 583–595 (1988). https://doi.org/10.1007/BF00973301

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973301

Key Words

Navigation