Skip to main content
Log in

Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellumin vivo

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The ontogenetic development of the enzymes phosphate activated glutaminase (PAG), glutamate dehydrogenase (GLDH), glutamic-oxaloacetic-transaminase (GOT), glutamine synthetase (GS), and ornithine-δ-aminotransferase (Orn-T) was followed in cerebellum in vivo and in cultured cerebellar granule cells. It was found that PAG, GLDH, and GOT exhibited similar developmental patterns in the cultured neurons compared to cerebellum. PAG showed, however, a more pronounced phosphate activation in the cultured granule cells compared to in vivo. The activity of GS remained low in the cultured neurons compared to the increasing activity of this enzyme found in vivo. On the other hand Orn-T exhibited an increase in its specific activity in the cultured cells as a function of time in culture in contrast to the non-changing activity of this enzyme in vivo. Compared to cerebellum the cultured neurons exhibited higher activities of GLDH, GOT, and Orn-T whereas the activity of PAG was only slightly higher in the cultured cells. The activity of GS in the cultured neurons was only 5–10% of the activity in cerebellum in vivo. It is concluded that cultured cerebellar granule cells represent a reliable model system by which the metabolism and function of glutamatergic neurons can be conveniently studied in a physiologically meaningful way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschuler, R. A., Neises, G. R., Harmison, G. G., Wenthold, R. J., andFex, J. 1981. Immunocytochemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig. Proc. Natl. Acad. Sci. USA 78:6553–6557.

    PubMed  Google Scholar 

  2. Bergmeyer, H. U., andBernt, E. 1974. Glutamat-oxaloacetat-transaminase. Pages 769–775in Bergmeyer, H. U. (ed.), Methoden der Enzymatischen Analyse, Verlag Chemie, Weinheim.

    Google Scholar 

  3. Berl, S. 1966. Glutamine synthetase. Determination of its distribution in brain during development. Biochemistry 5:916–922.

    PubMed  Google Scholar 

  4. Bradford, H. F., Ward, K. H., andThomas, A. J. 1978. Glutamine as a substrate for nerve endings. J. Neurochem. 30:1453–1459.

    PubMed  Google Scholar 

  5. Curthoys, N. P., andLowry, O. H. 1973. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem. 248:162–168.

    PubMed  Google Scholar 

  6. Currie, D. N. 1980. Identification of cell type by immunofluorescence in defined cell cultures of cerebellum. Pages 75–87,in Giacobini, E., Vernadakis, A., andShahar, A. (eds.), Tissue Culture in Neurobiology, RAven Press, New York.

    Google Scholar 

  7. Drejer, J., Larsson, O. M., andSchousboe, A. 1982. Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47:259–269.

    PubMed  Google Scholar 

  8. Drejer, J., Larsson, O. M., andSchousboe, A. 1982. Characterization of uptake and release processes ford- andl-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8:231–243.

    Google Scholar 

  9. Drejer, J., andSchousboe, A. 1984. Ornithine-δ-amino-transferase exhibits different kinetic properties in astrocytes, cerebral cortex interneurons, and cerebellar granule cells in primary culture. J. Neurochem. 42:1194–1197.

    PubMed  Google Scholar 

  10. Gallo, V., Ciotti, M. T., Coletti, A., Aloisi, F., andLevi, G. 1982. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. USA 79:7919–7923.

    PubMed  Google Scholar 

  11. Hertz, L., Juurlink, B. H. J., Fosmark, H., andSchousboe, A. 1982. Astrocytes in primary culture. Pages 175–186in Pfeiffer, S. E. (ed.) Neuroscience Approached Through Cell Culture, Vol. 1. CRC Press, Boca Raton, Fl.

    Google Scholar 

  12. Hertz, L., Kvamme, E., McGeer, E., andSchousboe A. (eds.) 1983. Glutamine, Glutamate and GABA in the Central Nervous System, Alan Liss Inc., New York.

    Google Scholar 

  13. Hertz, L., Yu A. C. H., Potter, R. L., Fisher, T. E., andSchousboe, A. 1983. Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures. Pages 327–342,in Hertz, L., Kvamme, E., McGeer, E. G., andSchousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System. Alan R. Liss Inc., New York.

    Google Scholar 

  14. Kvamme, E. 1979. Regulation of glutaminase and its possible implication for GABA metabolism. Pages 111–138,in Mandel, P., andDeFeudis, F. V. (eds.). GABA—Biochemistry and CNS Functions. Adv. Exp. Med. Biol. Vol. 123. Plenum Press, New York.

    Google Scholar 

  15. Kvamme, E., andSvenneby, G. 1975. Phosphate-activated glutaminase in brain. Pages 277–290,in Marks, N., andRodnight, R. (eds.), Research Methods in Neurochemistry. Vol. 3. Plenum Press, New York.

    Google Scholar 

  16. Kvamme, E., Svenneby, G., Hertz, L., andSchousboe, A. 1982. Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem. Res. 7:761–770.

    PubMed  Google Scholar 

  17. Kvamme, E., Torgner, I., andSvenneby, G. 1984. Glutaminases (Mammalian). Methods in Enzymology. In press.

  18. Larsson, O. M. Drejer, J., Kvamme, E., Svenneby, G., Hertz, L., andSchousboe, A. 1984. Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int. J. Devl. Neurosci. 2:in press.

  19. Larsson, O. M., Hertz, L., andSchousboe, A. 1983. Developmental profiles of glutamate and GABA metabolizing enzymes in cultured glutamatergic and GABAergic neurons. J. Neurochem. Suppl. 41:S85.

    Google Scholar 

  20. Larsson, O. M., Kvamme, E., Svenneby, G., Hertz, L., andSchousboe, A. 1984. Development of glutamate metabolizing enzymes in cultured cerebellar granule cells and cerebral cortex interneurons as compared with the in vivo ontogenetic development. Acta Neurol. Scand. 69:339–340.

    Google Scholar 

  21. Levi, G., andCiotti, M. T. 1983. Glutamate and GABA localization and evoked release in cerebellar cells differentiating in culture. Pages 493–508,in Hertz, L., Kvamme, E., McGeer, E. G., andSchousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, Inc., New York.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  23. Meier, E., Drejer, J., andSchousboe, A. 1983. Trophic actions of GABA on the development of physiologically active GABA receptors. Pages 47–58,in Mandel, P., andDeFeudis, F. V. (eds.). CNS-Receptors—From Molecular Pharmacology to Behavior. Raven Press, New York.

    Google Scholar 

  24. Meier, E., andSchousboe, A. 1982. Differences between GABA receptor binding to membranes from cerebellum during postnatal development and from cultured cerebellar granule cells. Dev. Neurosci. 5:546–553.

    PubMed  Google Scholar 

  25. Messer, A. 1977. The maintenance and identification of mouse cerebellar granule cells in mono layer culture. Brain Res. 130:1–12.

    PubMed  Google Scholar 

  26. Norenberg, M. D., andMartinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.

    PubMed  Google Scholar 

  27. Palay, S. L., andChan-Palay, V. (eds.). 1982. The Cerebellum-New Vistas. Exp. Brain Res., Suppl. 6:1–620.

  28. Patel, A. J., Hunt, A., Gordon, R. D., andBalazs, R. 1982. The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation of glutamate. Dev. Brain Res. 4:3–11.

    Google Scholar 

  29. Peraino, C., andPitot, H. C. 1963. Ornithine-δ-transaminase in the rat. I: Assay and some general properties. Biochim. Biophys. Acta 73:222–231.

    Google Scholar 

  30. Quastel, J. H. 1978. Cerebral glutamate-glutamine interrelations in vivo and in vitro. Pages 153–162,in Schoffeniels, E., Franck, G., Hertz, L., andTower, D. B. (eds.) Dynamic Properties of Glia Cells. Pergamon Press, Oxford.

    Google Scholar 

  31. Robins, E., Roberts, N. R., Eydt, K. M., Lowry, O. H., andSmith, D. E. 1956. Microdetermination of α-keto acids with special reference to malic, lactic and glutamic dehydrogenases in brain. J. Biol. Chem. 218:897–909.

    PubMed  Google Scholar 

  32. Rothe, F., Schmidt, W. andWolf, G. 1983. Postnatal changes in the activity of glutamate dehydrogenase and aspartate aminotransferase in the rat nervous system with special reference to the glutamate transmitter metabolism. Devl. Brain Res. 11:67–74.

    Google Scholar 

  33. Schmidt, E. 1974. Glutamate-Dehydrogenase. Pages 689–696,in Bergmeyer, H.-U. (ed.), Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim.

    Google Scholar 

  34. Schousboe, A. 1982. Glial marker enzymes. Pages 339–356,in Bock, E. (ed.). Nervous System Specific Proteins. Vol. 15, suppl. 9. Scand. J. Immunol. Blackwell Scientific Publications, London.

    Google Scholar 

  35. Schousboe, A., Svenneby, G., andHertz, L. 1977. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29:999–1005.

    PubMed  Google Scholar 

  36. Sensenbrenner, M., Maderspach, K., Latzkowitz, L., andJaros, G. G. 1978. Neuronal cells from chick embryo cerebral hemispheres cultivated on polylysine-coated surfaces. Devl. Neurosci. 1:90–101.

    Google Scholar 

  37. Shank, R. P., andCampbell, G., LeM. 1983. Ornithine as a precursor of glutamate and GABA: uptake and metabolism by neuronal and glial enriched cellular material. J. Neurosci. Res. 9:47–57.

    PubMed  Google Scholar 

  38. Weil-Malherbe, H., andGordon, J. 1971. Amino acid metabolism and ammonia formation in brain slices. J. Neurochem. 18:1659–1672.

    PubMed  Google Scholar 

  39. Wilkin, G. P., Balazs, R., Wilson, J. E., Cohen, J., andDutton, G. R. 1976. Preparation of cell bodies from the developing cerebellum. Structural and metabolic integrity of the isolated cells. Brain Res. 115:181–199.

    PubMed  Google Scholar 

  40. Wong, P. T.-H., andMcGeer, E. G. 1981. Postnatal changes of GABAergic and glutamatergic parameters. Dev. Brain Res. 1:519–529.

    Google Scholar 

  41. Wong, P. T.-H., McGeer, E. G., andMcGeer, P. L. 1981. A sensitive radiometric assay for ornithine aminotransferase: Regional and subcellular distributions in rat brain. J. Neurochem. 36:501–505.

    PubMed  Google Scholar 

  42. Yoneda, Y., Roberts, E., andDietz, G. W. Jr. 1981. A new synaptosomal biosynthetic pathway of glutamate and GABA from ornithine and its negative feedback inhibition by GABA. J. Neurochem. 38:1686–1694.

    Google Scholar 

  43. Yu, A. C. H., Hertz, E., andHertz, L. 1984. Alterations in uptake and release rates for GABA, glutamate and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation. J. Neurochem. 42:951–960.

    PubMed  Google Scholar 

  44. Yu, A. C. H., andHertz, L. 1982. Uptake of glutamate, GABA and glutamine into a predominantly GABAergic and a predominantly glutmatergic nerve cell population in culture. J. Neurosci. Res. 7:23–35.

    PubMed  Google Scholar 

  45. Yu, A. C. H., Schousboe, A., andHertz, L. 1982. Metabolic fate of14C-labelled glutamate in astrocytes in primary cultures. J. Neurochem. 39:954–960.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drejer, J., Larsson, O.M., Kvamme, E. et al. Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellumin vivo . Neurochem Res 10, 49–62 (1985). https://doi.org/10.1007/BF00964771

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964771

Keywords

Navigation