Skip to main content
Log in

Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Many geological and geophysical investigations, particularly the Deep Sea Drilling Project, have shown that convergent plate margins are highly diverse features. For example, at some sites of subduction, such as the Lesser Antilles, the bedded sediment atop the incoming oceanic plate is extensively offscraped, whereas at others, such as Mariana, not only is the incoming sediment completely subducted beneath crystalline rock but portions of the overriding plate are undergoing subduction erosion. Earthquakes indicate wide variations in stress distribution within and between sites of plate convergence. Many ancient accretionary complexes include tracts of intensely-deformed subduction melange that contain blocks of mafic greenstones. Some contain bodies of thoroughly recrystallized blueschist that were uplifted from depths of 20 to 30 km. A comprehensive model for convergent plate margins must explain these and numerous other observations. Although the still widely cited imbricatethrust model for prism accretion qualitatively explains some observations at subduction zones, it does not account for many others, such as deep sediment subduction and subduction erosion.

The subduction-channel model postulates essentially the same basic mechanics for all convergent plate margins that have attained a quasi-steady state (typically reached after about 20 Ma of subduction at speeds of 10 to 20 km Ma−1). It assumes that the subducting sediment deforms approximately as a viscous material once it is dragged into a relatively thin shear zone, or subduction channel, between the downgoing plate and the overriding one. It predicts the overall movement patterns of the sediment deforming within the channel and near its inlet, accounts for most of the observed features at convergent plate margins, and quantifies the processes of sediment subduction, offscraping, and underplating, and the formation of subduction melange. The predicted variations in tectonic behavior depend upon such site-specific variables as the speed of subduction, the supply of sediment, the geometry of the descending plate, and the topography and structure of the overriding block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalto, K. R. (1982),The Franciscan Complex of Northernmost California: Sedimentation and Tectonics, Geological Society of London Special Publication10, 419–432.

    Google Scholar 

  • Allegre, C. J., Hamelin, B., andDupre, B. (1984),Statistical Analysis of Isotopic Ratios in MORB: The Mantle Blob Cluster Model and the Convective Regime of the Mantle, Earth and Planetary Science Letters71, 71–84.

    Google Scholar 

  • Aoki, Y., Tamano, T., andKato, S. (1983),Detailed Structure of the Nankai Trough from Migrated Seismic Section, American Association of Petroleum Geologists Memoir34, 309–324.

    Google Scholar 

  • Arculus, R. J. andPowell, R. (1986),Source Component Mixing in the Regions of Arc Magma Generation, Journal of Geophysical Research91, 5913–5926.

    Google Scholar 

  • Armstrong, R. L. (1971),Isotopic and Chemical Constraints on Models of Magma Genesis in Volcanic Arcs, Earth and Planetary Science Letters12, 137–142.

    Google Scholar 

  • Armstrong, R. L. (1981),Radiogenic Isotopes: The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth, Philosophical Transactions of the Royal Society of LondonA 301, 443–472.

    Google Scholar 

  • Aubouin, J., Bourgois, J., andAzema, J. (1984),A New Type of Active Margin: The Convergent-Extensional Margin, as Exemplified by the Middle America Trench off Guatemala, Earth and Planetary Science Letters67, 211–218.

    Google Scholar 

  • Bachman, S. B. (1978),A Cretaceous and Early Tertiary Subduction Complex, Mendocino Coast, Northern California, InMesozoic Palegeography of the Western United States (eds. Howell, D. G., and McDougall, K. A.) (Pacific Coast Paleogeography Symposium2) pp. 419–430.

  • Bachman, S. B. (1982),The Coastal Belt of the Franciscan: Youngest Phase of Northern California Subduction, Geological Society of London Special Publication10, 401–418.

    Google Scholar 

  • Barreiro, B. (1983),Lead Isotopic Compositions of South Sandwich Island Volcanic Rocks and Their Bearing on Magmagenesis in Intra-Oceanic Island Arcs, Geochimica et Cosmochimica Acta47, 817–822.

    Google Scholar 

  • Beck, R. M. andLehner, P. (1974),Oceans, New Frontier in Exploration, American Association of Petroleum Geologists Bulletin58, 376–395.

    Google Scholar 

  • Becker, D. G. andCloos, M. (1985),Melange Diapirs into the Cambria Slab: A Franciscan Trench Slope Basin near Cambria, California, Journal of Geology93, 101–110.

    Google Scholar 

  • Biju-Duval, B., Le Quellec, P., Mascle, A., Renard, V., andVallery, P. (1982),Multibeam Bathymetric Survey and High Resolution Seismic Investigations on the Barbados Ridge Complex (Eastern Caribbean): A Key to the Knowledge and Interpretation of an Accretionary Wedge, Tectonophysics86, 275–304.

    Google Scholar 

  • Bird, P. (1978),Stress and Temperature in Subduction Shear Zones: Tonga and Mariana, Geophysical Journal of the Royal Astronomical Society55, 411–434.

    Google Scholar 

  • Bloomer, S. H. (1983),Distribution and Origin of Igneous Rocks from the Landward Slopes of the Mariana Trench: Implications for Its Structure and Evolution, Journal of Geophysical Research88, 7411–7428.

    Google Scholar 

  • Boggs, S. (1984),Quaternary Sedimentation in the Japan Arc-Trench System, Geological Society of America Bulletin95, 669–685.

    Google Scholar 

  • Brace, W. F. (1980),Permeability of Crystalline and Argillaceous Rocks, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts17, 241–251.

    Google Scholar 

  • Brace, W. F. (1984),Permeability of Crystalline Rocks: New In-Situ Measurements, Journal of Geophysical Research89, 4327–4330.

    Google Scholar 

  • Brandon, M. T. (1986),Comment and Reply on “Comments on the Growth of Accretionary Wedges,” Geology14, 184–186.

    Google Scholar 

  • Breen, N. A., Silver, E. A., andHussong, D. M. (1986),Structural Styles of an Accretionary Wedge South of the Island of Sumba, Indonesia, Revealed by SeaMARC II Side Scan Sonar, Geological Society of America Bulletin97, 1250–1261.

    Google Scholar 

  • Brown, L., Klein, J., Middleton, R., Sacks, I. S., andTera, F. (1982),10 Be in Island-Arc Volcanoes and Implications for Subduction, Nature229, 718–720.

    Google Scholar 

  • Bryant, W. R., Hottman, W., andTrabant, P. (1975),Permeability of Unconsolidated and Consolidated Marine Sediments, Gulf of Mexico, Marine Geotechnology1, 1–14.

    Google Scholar 

  • Byrne, T. (1982),Structural Evolution of Coherent Terranes in the Ghost Rocks Formation, Kodiak Island, Alaska, Geological Society of London Special Publication10, 229–242.

    Google Scholar 

  • Byrne, T. (1984),Early Deformation in Melange Terranes of the Ghost Rocks Formation, Kodiak Islands, Alaska, Geological Society of America Special Paper198, 21–52.

    Google Scholar 

  • Cande, S. C. andLeslie, R. B. (1986),Late Cenozoic Tectonics of the Southern Chile Trench, Journal of Geophysical Research91, 471–496.

    Google Scholar 

  • Carlson, W. D. andRosenfeld, J. L. (1981).Optical Determination of Topotactic Aragonite-Calcite Growth Kinetics: Metamorphic Implications, Journal of Geology89, 615–638.

    Google Scholar 

  • Carson, B. (1977),Tectonically Induced Deformation of Deep-Sea Sediments off Washington and Northern Oregon: Mechanical Consolidation, Marine Geology24, 289–307.

    Google Scholar 

  • Carson, B. andBerglund, P. L. (1986),Sediment Deformation and Dewatering under Horizontal Compression: Experimental Results, Geological Society of America Memoir166, 135–150.

    Google Scholar 

  • Carson, B., von Huene, R., andArthur, M. (1982),Small-Scale Deformation Structures and Physical Properties Related to Convergence in Japan Trench Slope Sediments, Tectonics1, 277–302.

    Google Scholar 

  • Carson, B., Yuan, J., Myers, P. B., andBarnard, W. D. (1974),Initial Deep-Sea Sediment Deformation at the Base of the Washington Continental Slope: A Response to Subduction, Geology2, 561–564.

    Google Scholar 

  • Chapple, W. M. (1978),Mechanics of Thin-Skinned Fold-and-Thrust Belts, Geological Society of America Bulletin89, 1189–1198.

    Google Scholar 

  • Chase, R. L. andBunce, E. T. (1969),Underthrusting of the Eastern Margin of the Antilles by the Floor of the Western North Atlantic Ocean and the Origin of the Barbados Ridge, Journal of Geophysical Research74, 1413–1420.

    Google Scholar 

  • Chen, A. T., Frohlich, C., andLathan, G. V. (1982),Seismicity of the Forearc Marginal Wedge (Accretionary Prism), Journal of Geophysical Research87, 3679–3690.

    Google Scholar 

  • Chopin, C. (1984),Coesite and Pure Pyrope in High Grade Blueschists of the Western Alps: A First Record and Some Consequences, Contributions to Mineralogy and Petrology86, 107–118.

    Google Scholar 

  • Church, S. E. (1973),Limits of Sediment Involvement in the Genesis of Orogenic Volcanic Rocks, Contributions to Mineralogy and Petrology39, 17–32.

    Google Scholar 

  • Cloos, M. (1982),Flow Melanges: Numerical Modeling and Geologic Constraints on Their Origin in the Franciscan Subduction Complex, Geological Society of America Bulletin93, 330–345.

    Google Scholar 

  • Cloos, M. (1984),Flow Melanges and the Structural Evolution of Accretionary Wedges, Geological Society of America Special Paper198, 71–80.

    Google Scholar 

  • Cloos, M. (1985),Thermal Evolution of Convergent Plate Margins: Thermal Modeling and Reevaluation of Isotopic Ar Ages for Blueschists in the Franciscan Complex of California, Tectonics4, 421–433.

    Google Scholar 

  • Cloos, M. (1986),Blueschists in the Franciscan Complex of California: Petrotectonic Constraints on Uplift Mechanisms, Geological Society of America Memoir164, 77–93.

    Google Scholar 

  • Cloos, M. andShreve, R. L. (1988),Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 2. Implications and Discussion, Pure and Applied Geophysics128, 314, 501–545.

    Google Scholar 

  • Clowes, R. M., Brandon, M. T., Green, A. G., Yorath, C. J., Sutherland-Brown, A., Kanasewich, E. R., andSpencer, C. (1987),Lithoprobe—Southern Vancouver Island: Cenozoic Subduction Complex Imaged by Deep Seismic Reflections, Canadian Journal of Earth Sciences24, 31–51.

    Google Scholar 

  • Coats, R. R. (1962),Magma Type and Crustal Structure in the Aleutian Arc, American Geophysical Union Monograph6, 92–109.

    Google Scholar 

  • Cohen, R. S. andO'nions, R. K. (1982),Identification of Recycled Continental Material in the Mantle from Sr, Nd, and Pb Isotope Investigations, Earth and Planetary Science Letters61, 73–84.

    Google Scholar 

  • Coleman, R. G. (1980),Tectonic Inclusions in Serpentinites, Société de Physique et d'Histoire Naturelle de Genève, Archives des Sciences33, 89–102.

    Google Scholar 

  • Connelly, W. (1978),Uyak Complex, Kodiak Islands, Alaska: A Cretaceous Subduction Complex, Geological Society of America Bulletin89, 755–769.

    Google Scholar 

  • Couch, R., Whitsett, R., Huehn, B., andBriceno-Guarupe, L. (1981),Structures of the Continental Margin of Peru and Chile, Geological Society of America Memoir154, 569–586.

    Google Scholar 

  • Coulbourn, W. T. (1981),Tectonics of the Nazca Plate and the Continental Margin of Western South America, 18° S to 23° S, Geological Society of America Memoir154, 587–618.

    Google Scholar 

  • Coulbourn, W. T. andMoberly, R. (1977),Structural Evolution of Forearc Basins off Southern Peru and Northern Chile, Canadian Journal of Earth Sciences14, 102–116.

    Google Scholar 

  • Cowan, D. S. (1982),Origin of “Vein Sturcture” in Slope Sediments on the Inner Slope of the Middle America Trench off Guatemala, Initial Reports of the Deep Sea Drilling Project67, 645–650.

    Google Scholar 

  • Cowan, D. S. (1985),Structural Styles in Mesozoic and Cenozoic Melanges in the Western Cordillera of North America, Geological Society of America Bulletin96, 451–462.

    Google Scholar 

  • Cowan, D. S. andSilling, R. M. (1978),A Dynamic Scaled Model of Trenches and Its Implications for the Tectonic Evolution of Subduction Complexes, Journal of Geophysical Research83, 5389–5396.

    Google Scholar 

  • Dahlen, F., Suppe, J., andDavis, D. (1984),Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory, Journal of Geophysical Research89, 10,125–10,133.

    Google Scholar 

  • Davidson, J. P. (1986),Isotopic and Trace Element Constraints on the Petrogenesis of Subduction-Related Lavas from Martinique, Lesser Antilles, Journal of Geophysical Research91, 5943–5962.

    Google Scholar 

  • Davidson, J. P. (1987),Crustal Contamination Versus Subduction Zone Enrichment: Examples from the Lesser Antilles and Implications for Mantle Source Compositions of Island Arc Volcanic Rocks, Geochimica et Cosmochimica Acta51, 2185–2198.

    Google Scholar 

  • Davies, T. A. andGorsline, D. S. (1976),Oceanic Sediments and Sedimentary Processes, Chemical Oceanography5, 1–80.

    Google Scholar 

  • Davis, D., Suppe, J., andDahlen, F. A. (1983),Mechanics of Fold-and-Thrust Belts and Accretionary Wedges, Journal of Geophysical Research88, 1153–1172.

    Google Scholar 

  • Davis, D. M. andvon Huene, R. (1987),Inferences on Sediment Strength and Fault Friction from Structures at the Aleutian Trench, Geology15, 517–522.

    Google Scholar 

  • Dewey, J. F. andBird, J. M. (1970),Mountain Belts and the New Global Tectonics, Journal of Geophysical Research75, 2625–2647.

    Google Scholar 

  • Dickinson, W. R. (1973),Widths of Modern Arc-Trench Gaps Proportional to Past Duration of Igneous Activity in Associated Magmatic Arcs, Journal of Geophysical Research,78, 3395–3417.

    Google Scholar 

  • Dickinson, W. R. andSeely, D. R. (1979),Structure and Stratigraphy of Forearc Regions, American Association of Petroleum Geologists Bulletin62, 2–31.

    Google Scholar 

  • Dickinson, W. R. andSnyder, W. S. (1979),Geometry of Subducted Slabs Related to San Andreas Transform, Journal of Geology87, 609–627.

    Google Scholar 

  • Draper, G. (1986),Blueschists and Associated Rocks in Eastern Jamaica and Their Significance for Cretaceous Plate-Margin Development in the Northern Caribbean, Geological Society of America Bulletin97, 48–60.

    Google Scholar 

  • Draper, G. andBone, R. (1980),Denudation Rates, Thermal, Evolution, and Preservation of Blueschist Terrains, Journal of Geology89, 601–613.

    Google Scholar 

  • Elliot, D. (1976),The Motion of Thrust Sheets, Journal of Geophysical Research81, 949–963.

    Google Scholar 

  • Emerman, S. H. andTurcotte, D. L. (1983),A Fluid Model for the Shape of Accretionary Wedges, Earth and Planetary Science Letters63, 379–384.

    Google Scholar 

  • England, P. C. andHolland, T. J. B. (1979),Archimedes and the Tauren Eclogites: The Role of Buoyancy in the Preservation of Exotic Eclogite Blocks, Earth and Planetary Science Letters44, 287–294.

    Google Scholar 

  • England, P. C. andThompson, A. B. (1984),Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust, Journal of Petrology25, 894–928.

    Google Scholar 

  • Ernst, W. G. (1970),Tectonic Contact between the Franciscan Melange and Great Valley Sequence, Crustal Expression of a Late Mesozoic Benioff Zone, Journal of Geophysical Research75, 886–902.

    Google Scholar 

  • Ernst, W. G. (1971),Do Mineral Parageneses Reflect Unusually High Pressure Conditions of Franciscan Metamorphism?, American Journal of Science271, 879–914.

    Google Scholar 

  • Ernst, W. G. (1975),Systematics of Large-Scale Tectonics and Age Progressions in Alpine and Circum-Pacific Blueschist Belts, Tectonophysics26, 229–246.

    Google Scholar 

  • Evans, B. andBrown, E. H. (eds.) (1986),Blueschists and Related Rocks, Geological Society of America Memoir164, 423.

  • Farhoudi, G. andKarig, D. E. (1977),Makran of Iran and Pakistan as an Active Arc System, Geology5, 664–668.

    Google Scholar 

  • Fisher, D. andByrne, T. (1987),Structural Evolution of Underthrusted Sediments, Kodiak Islands, Alaska, Tectonics6, 775–793.

    Google Scholar 

  • Frohlich, C., Billington, S., Engdahl, E. R., andMalahoff, A. (1982),Detection and Location of Earthquakes in the Central Aleutian Subduction Zone Using Island and Ocean Bottom Seismograph Stations, Journal of Geophysical Research87, 6853–6864.

    Google Scholar 

  • Fryer, P., Ambos, E. L., andHussong, D. M. (1985),Origin and Emplacement of Mariana Forearc Seamounts, Geology13, 774–777.

    Google Scholar 

  • Griffin, J. J., Windom, H., andGoldberg, E. D. (1968),The Distribution of Clay Minearals in the World Ocean, Deep-Sea Research15, 433–459.

    Google Scholar 

  • Grow, J. A. (1973),Crustal and Upper Mantle Structure of the Central Aleutian Arc, Geological Society of America Bulletin84, 2169–2192.

    Google Scholar 

  • Gilluly, J. (1969),Oceanic Sediment Volumes and Continental Drift, Science166, 992–993.

    Google Scholar 

  • Gilluly, J., Reed, J. C., andCady, W. M. (1970),Sedimentary Volumes and Their Significance, Geological Society of America Bulletin81, 353–376.

    Google Scholar 

  • Habermann, R. E., McCann, W. R., andPerin, B. (1986),Spatial Seismicity Variations Along Convergent Plate Boundaries, Geophysical Journal of the Royal Astronomical Society85, 43–68.

    Google Scholar 

  • Hamilton, W. (1979),Tectonics of the Indonesian Region, U. S. Geological Survey Professional Paper1079, 345.

    Google Scholar 

  • Helwig, J. andEmmet, P. (1981),Structure of the Early Tertiary Orca Group in Prince William Sound and Some Implications for the Plate Tectonic History of Southern Alaska, Journal of the Alaska Geological Survey1, 12–35.

    Google Scholar 

  • Herron, E. M., Bruhn, R., Winslow, M., andChuaqui, L. (1977),Post Miocene Tectonics of the Margin of Southern Chile, American Geophysical Union Maurice Ewing Series1, 273–284.

    Google Scholar 

  • Hibbard, J., andKarig, D. E. (1987),Sheath-Like Folds and Progressive Fold Deformation in Tertiary Sedimentary Rocks of the Shimanto Accretionary Complex, Japan, Journal of Structural Geology9, 845–857.

    Google Scholar 

  • Hilde, T. W. C. (1983),Sediment Subduction Versus Accretion around the Pacific, Tectonophysics99, 381–397.

    Google Scholar 

  • Hill, M., Morris, J. andWhelan, J. (1981),Hybrid Granodiorites Intruding the Accretionary Prism, Kodiak, Shumagin, and Sanak Islands, Southwest Alaska, Journal of Geophysical Research86, 10,591–10,606.

    Google Scholar 

  • Hole, M. J., Saunders, A. D., Marriner, G. F., andTarney, J. (1984),Subduction of Pelagic Sediments: Implications for the Origin of Ce-Anomalous Basalts from the Mariana Islands, Journal of the Geological Society of London141, 453–472.

    Google Scholar 

  • Honda, S. andUyeda, S. (1983),Thermal Process in Subduction Zone—A Review and Preliminary Approach on the Origin of Arc Volcanism, InArc Volcanism: Physics and Tectonics (eds. Shimozuru, D., and Yokoyama, I.) (Terra Scientific Publishing Company (TERRAPUB), Tokyo, 1983) pp. 117–140.

    Google Scholar 

  • Hsui, A. T., Marsh, B. D., andToksöz, M. N. (1983),On Melting of the Subducted Oceanic Crust: Effects of Subduction Induced Mantle Flow, Tectonophysics99, 207–220.

    Google Scholar 

  • Hsui, A. T. andToksöz, M. N. (1979),The Evolution of Thermal Structures beneath a Subduction Zone, Tectonophysics60, 43–60.

    Google Scholar 

  • Hussong, D. M. andWipperman, L. K. (1981),Vertical Movement and Tectonic Erosion of the Continental Wall of the Peru-Chile Trench near 11°30′ S Latitude, Geological Society of America Memoir154, 509–524.

    Google Scholar 

  • Hussong, D. M. andUyeda, S. (1982),Tectonic Processes and the History of the Mariana Arc: A Synthesis of the Results of Deep Sea Drilling Project Leg 60, Initial Reports of the Deep Sea Drilling Project60, 909–929.

    Google Scholar 

  • Isacks, B. andBarazangi, M. (1977),Geometry of Benioff Zones: Lateral Segmentation and Downards Bending of the Subducted Lithosphere, American Geophysical Union Maurice Ewing Series1, 99–114.

    Google Scholar 

  • Isacks, B., Oliver, J. andSykes, L. R. (1968),Seismology and the New Global Tectonics, Journal of Geophysical Research73, 5855–5899.

    Google Scholar 

  • Iverson, R. M. (1985),A Constitutive Equation of Mass-Movement Behavior, Journal of Geology93, 143–160.

    Google Scholar 

  • Jarrard, R. D. (1986),Relations among Subduction Parameters, Reviews of Geophysics24, 217–284.

    Google Scholar 

  • Jones, G. M., Hilde, T. W. C., Sharman, G. F., andAgnew, D. C. (1978),Fault Patterns in Outer Trench Walls and Their Tectonic Significance, Journal of the Physics of the Earth26, 85–101.

    Google Scholar 

  • Karig, D. E. (1974a),Evolution of Arc Systems in the Western Pacific, Annual Reviews of Earth and Planetary Sciences21, 51–75.

    Google Scholar 

  • Karig, D. E. (1974b),Tectonic Erosion at Trenches, Earth and Planetary Science Letters21 209–212.

    Google Scholar 

  • Karig, D. E. (1977),Growth Patterns on the Upper Trench Slope, American Geophysical Union Maurice Ewing Series1, 175–186.

    Google Scholar 

  • Karig, D. E. (1983),Deformation in the Forearc: Implications for Mountain Belts InMountain Building Processes (ed. Hsu, K. J.) (Academic Press, London, 1983) pp. 59–72.

    Google Scholar 

  • Karig, D. E. (1986),Physical Properties and Mechanical State of Accreted Sediments in the Nankai Trough, Southwest Japan Arc, Geological Society of America Memoir166, 117–133.

    Google Scholar 

  • Karig, D. E. andKagami, H. (1983),Varied Responses to Subduction in Nankai Trough and Japan Trench Forearcs, Nature304, 148–151.

    Google Scholar 

  • Karig, D. E. andKay, R. W. (1981),Fate of Sediments on the Descending Plate at Convergent Margins, Philosophical Transactions of the Royal Society of London A301, 233–251.

    Google Scholar 

  • Karig, D. E. andSharman, G. F. (1975),Subduction and Accretion in Trenches, Geological Society of America Bulletin86, 377–389.

    Google Scholar 

  • Karig, D. E., Caldwell, J. G., andParmentier, E. M. (1976),Effects of Accretion on the Geometry of the Descending Lithosphere, Journal of Geophysical Research81, 6281–6291.

    Google Scholar 

  • Karig, D. E., Cardwell, R. K., Moore, G. F., andMoore, D. G. (1978),Late Cenozoic Subduction and Continental Truncation along the Northern Middle America Trench, Geological Society of America Bulletin89, 265–276.

    Google Scholar 

  • Karig, D. E., Moore, G. F., Curray, J. R., andLawrence, M. B. (1980),Morphology and Shallow Structure of the Lower Trench Slope off Nias Island, Sunda Arc, American Geophysical Union Monograph23, 179–208.

    Google Scholar 

  • Katz, R. (1971),Continental Margin in Chile—Is the Tectonic Style Compressional or Extensional?, American Association of Petroleum Geologists Bulletin55, 1753–1758.

    Google Scholar 

  • Kay, R. W. (1980),Volcanic Arc Magmas: Implications of a Melting-Mixing Model for Element Recycling in the Crust-Upper Mantle, Journal of Geology88, 497–522.

    Google Scholar 

  • Kehle, R. O. (1970),Analysis of Gravity Sliding and Orogenic Translation, Geological Society of America Bulletin81, 1641–1664.

    Google Scholar 

  • Krantz, R. L. andBlacic, J. D. (1984),Permeability Changes during Time-Dependent Deformation of Silicate Rock, Geophysical Research Letters11, 975–978.

    Google Scholar 

  • Kulm, L. D. andFowler, G. A.,Oregon Continental Margin Structure and Stratigraphy: A Test of the Imbricate-Thrust Model, InGeology of the Continental Margins (eds. Burk, C. A., and Drake, C. L.) (Springer-Verlag, New York, 1974) pp. 261–283.

    Google Scholar 

  • Kulm, L. D., Prince, R. A., French, W., Johnson, S. andMasias, A. (1981),Crustal Structure and Tectonics of the Central Peru Continental Margin and Trench, Geological Society of America Memoir154, 445–468.

    Google Scholar 

  • Kulm, L. D., Scheidegger, K. F., Prince, R. A., Dymond, J., Moore, T. C., andHussong, D. M. (1973),Theoleiitic Basalt Ridge in the Peru Trench, Geology1, 11–14.

    Google Scholar 

  • Larue, D. K. andHuddleston, P. J. (1987),Foliated Breccias in the Active Portuguese Bend Landslide Complex, California: Bearing on Melange Genesis, Journal of Geology95, 407–422.

    Google Scholar 

  • Lash, G. G. (1985),Recognition of Trench Fill in Orogenic Flysch Sequences, Geology13, 867–870.

    Google Scholar 

  • Lay, T., Kanamori, H. andRuff, L. (1982),The Asperity Model and the Nature of Large Subduction Zone Earthquakes, Earthquake Prediction Research1, 3–71.

    Google Scholar 

  • Leeman, W. P. (1983),The Influence of Crustal Structure on Compositions of Subduction-Related Magmas, Journal of Volcanology and Geothermal Research18, 561–588.

    Google Scholar 

  • Leggett, J. K. (1985),Deep-Sea Pelagic Sediments and Palaeo-Oceanography: A Review of Recent Progress, Geological Society of London Special Publication18, 95–121.

    Google Scholar 

  • Leggett, J., Aoki, Y., andToba, T. (1985),Transition from Frontal Accretion to Underplating in a Part of the Nankai Trough Accretionary Complex off Shikoku (SW Japan) and Extensional Features of the Lower Slope, Marine and Petroleum Geology2, 131–141.

    Google Scholar 

  • Lonsdale, P. (1978),Ecuadorian Subduction System, American Association of Petroleum Geologists Bulletin62, 2454–2477.

    Google Scholar 

  • Lonsdale, P. (1981),Drifts and Ponds of Reworked Pelagic Sediment in Part of the Southwest Pacific, Marine Geology43, 153–193.

    Google Scholar 

  • Ludwig, W. H., Ewing, J. I., Ewing, M., Murauchi, S., Den, N., Asano, S., Hotta, H., Hayakawa, M., Asanuma, T., Ichikawa, K., andNoguchi, I. (1966),Sediments and Structure of the Japan Trench, Journal of Geophysical Research71, 2121–2137.

    Google Scholar 

  • Lundberg, N. (1983),Development of Forearcs of Intraoceanic Subduction Zones, Tectonics2, 51–61.

    Google Scholar 

  • Lundberg, N., andMoore, J. C. (1981),Structural Features of the Middle America Trench Slope off Southern Mexico, Deep Sea Drilling Project Leg 66, Initial Reports of the Deep Sea Drilling Project66, 793–814.

    Google Scholar 

  • Lundberg, N. andMoore, J. C. (1986),Macroscopic Structural Features in Deep Sea Drilling Project Cores from Forearc Regions, Geological Society of America Memoir166, 13–44.

    Google Scholar 

  • Mackenzie, J. S., Needham, D. T., andAgar, S. M. (1987),Progressive Deformation in an Accretionary Complex: An Example from the Shimanto Belt of Eastern Kyushu, Southwest Japan, Geology15, 353–356.

    Google Scholar 

  • Marshak, R. S. andKarig, D. E. (1977),Triple Junctions as a Cause for Anomalously Near-Trench Igneous Activity between the Trench and Volcanic Arc, Geology5, 233–236.

    Google Scholar 

  • Maxwell, J. C. (1974),Anatomy of an Orogen, Geological Society of America Bulletin85, 1195–1204.

    Google Scholar 

  • Matsuzawa, A., Tamano, T., Aoki, Y., andIkawa, T. (1980),Structure of the Japan Trench Subduction Zone, from Multi-Channel Seismic-Reflection Records, Marine Geology35, 171–182.

    Google Scholar 

  • McCarthy, J. andScholl D. W. (1985),Mechanisms of Subduction Accretion along the Central Aleutian Trench, Geological Society of America Bulletin96, 691–701.

    Google Scholar 

  • McKenzie, D. P. (1969),Speculations on the Consequences and Causes of Plate Motions, Geophysical Journal of the Royal Astronomical Society18, 1–32.

    Google Scholar 

  • McLintock, F. A. andWalsh, J. B. (1962),Friction of Griffith Cracks in Rocks under Pressure. InProceedings of the Fourth U.S. National Congress of Applied Mechanics, 2 (ed. Rosenberg, R. M.) (American Society of Mechanical Engineers, New York, 1962) pp. 1015–1021.

    Google Scholar 

  • McMillen, K. J. andBachman, S. B. (1982),Bathymetric and Tectonic Evolution of the Southern Mexico Active Margin, Deep Sea Drilling Project Leg 66, Initial Reports of the Deep Sea Drilling Project66, 815–822.

    Google Scholar 

  • Minster, J. B. andJordan, T. H. (1978),Present Day Plate Motions, Journal of Geophysical Research83, 5331–5354.

    Google Scholar 

  • Moberly, R., Shepherd, G. L., andCoulbourn, W. T. (1982),Forearc and Other Basins, Continental Margin of Northern and Southern Peru and Adjacent Ecuador and Chile, Geological Society of London Special Publication10, 171–190.

    Google Scholar 

  • Moore, G. F. andKarig, D. E. (1976),Development of Sedimentary Basins on the Lower Trench Slope, Geology4, 693–697.

    Google Scholar 

  • Moore, G. F. andKarig, D. E. (1980),Structural Geology of Nias Island, Indonesia: Implications of Subduction Zone Tectonics, American Journal of Science280, 193–223.

    Google Scholar 

  • Moore, G. F. andCurray, J. R. (1980),Structure of the Sunda Trench Lower Slope off Sumatra from Multichannel Seismic Reflection Data, Marine Geophysical Researches4, 319–340.

    Google Scholar 

  • Moore, G. F., Billman, H. G., Henhanussa, P. E., andKarig, D. E. (1980),Sedimentology and Paleobathymetry of Neogene Trench Slope Deposits, Nias Island, Indonesia, Journal of Geology88, 161–180.

    Google Scholar 

  • Moore, J. C. (1975),Selective Subduction, Geology3, 530–532.

    Google Scholar 

  • Moore, J. C. andAllwardt, A. (1980),Progressive Deformation of a Tertiary Trench Slope, Kodiak Islands, Alaska, Journal of Geophysical Research85, 4741–4756.

    Google Scholar 

  • Moore, J. C., Biju-Duval, B., Bergen, J. A., Blackinton, G., Claypool, G. E., Cowan, D. S., Duennebier, F., Guerra, R. T., Hemleben, C. H. J., Hussong, D., Marlow, M. S., Natland, J. H., Pudsey, C. J., Renz, G. W., Tardy, M., Willis, M. E., Wilson, D. andWright, A. A. (1982c),Offscraping and Underthrusting of Sediment at the Deformation Front of the Barbados Ridge: Deep Sea Drilling Project Leg 78A, Geological Society of America Bulletin93, 1065–1077.

    Google Scholar 

  • Moore, J. C. andByrne, T. (1987),Thickening of Fault Zones: A Mechanism of Melange Formation in Accreting Sediments, Geology15, 1040–1043.

    Google Scholar 

  • Moore, J. C. andGeigle, J. E. (1974),Slaty Cleavage: Incipient Occurrences in the Deep Sea, Science183, 504–508.

    Google Scholar 

  • Moore, J. C. andKarig, D. E. (1976),Sedimentology, Structural Geology, and Tectonics of the Shikoku Subduction Zone, Geological Society of America Bulletin87, 1259–1268.

    Google Scholar 

  • Moore, J. C. andLundberg, N. (1986),Tectonic Overview of Deep Sea Drilling Project Transects of Forearcs, Geological Society of America Memoir166, 1–12.

    Google Scholar 

  • Moore, J. C. andSilver, E. A. (1987),Continental Margin Tectonics: Submarine Accretionary Prism, Reviews of Geophysics25, 1305–1312.

    Google Scholar 

  • Moore, J. C., Mascle, A., Taylor, E., Andreieff, P., Alvarez, F., Barnes, R., Beck, C., Behrmann, J., Blanc, G., Brown, K., Clark, M., Dolan, J., Fisher, A., Gieskes, J., Hounslow, M., McLellan, P., Moran, K., Ogawa, Y., Sakai, T., Schoonmaker, J., Vrolijk, P., Wilkens, R., andWilliams, C. (1987),Expulsion of Fluids from Depth along a Subduction-Zone Décollement Horizon, Nature326, 785–788.

    Google Scholar 

  • Moore, J. C., Roeske, S., Lundberg, N., Schoonmaker, J., Cowan, D. S., Gonzales, E., andLucas, S. E. (1986),Scaly Fabrics from Deep Sea Drilling Project Cores from Forearcs, Geological Society of America Memoir166, 55–73.

    Google Scholar 

  • Moore, J. C., Watkins, J. S., McMillen, K. J., Bachman, S. B., Leggett, J. K., Lundberg, N., Shipley, T. H., Stephan, J., Beghtel, F. W., Butt, A., Didyk, B. M., Nitsuma, N., Shephard, L. E., andStradner, H. (1982b),Facies Belts of the Middle America Trench and Forearc Region, Southern Mexico: Results from Leg 66, DSDP, Geological Society of London Special Publication10, 77–94.

    Google Scholar 

  • Moore, J. C., Watkins, J. S., Shipley, T. H., McMillen, K. J., Bachman, S. B., andLundberg, N. (1982a),Geology and Tectonic Evolution of a Juvenile Accretionary Terrane along a Truncated Convergent Margin: Synthesis of Results from Leg 66 of the Deep Sea Drilling Project, Southern Mexico, Geological Society of America Bulletin93, 847–861.

    Google Scholar 

  • Morrow, C. A., Shi, L. Q., andByerlee, J. D. (1984),Permeability of Fault Gouge under Confining Pressure and Shear Stress, Journal of Geophysical Research89, 3193–3200.

    Google Scholar 

  • Mottl, M. J. (1983),Metabasalts, Axial Hot Springs, and the Structure of Hydrothermal Systems at Mid-Ocean Ridges, Geological Society of America Bulletin94, 161–180.

    Google Scholar 

  • Mrozowski, C. L. andHayes, D. E. (1980),A Seismic Reflection Study of Faulting in the Mariana Forearc, American Geophysical Union Monograph23, 223–234

    Google Scholar 

  • Mrozowski, C. L., Hayes, D. E., andTaylor, B. (1982),Multichannel Seismic Reflection Surveys Leg 60 Sites, Deep Sea Drilling Project, Initial Reports of the Deep Sea Drilling Project60, 57–69.

    Google Scholar 

  • Myers, J. D., Frost, C. D., andAngevine, C. L. (1986),A Test of Quartz Eclogite Source for Parental Aleutian Magmas: A Mass Balance Approach, Journal of Geology94, 811–828.

    Google Scholar 

  • Nasu, N., von Huene, R., Ishiwada, Y., Langseth, M., Burns, T., andHonza, E. (1980),Interpretation of Multichannel Seismic Reflection Data, Legs 56 and 57, Japan Trench Transect, Deep Sea Drilling Project, Initial Reports of the Deep Sea Drilling Project57, 489–503.

    Google Scholar 

  • Nilsen, T. H. andZuffa, G. G. (1982),The Chugach Terrane, a Cretaceous Trench-Fill Deposit, Southern Alaska, Geological Society of London Special Publication10, 213–228.

    Google Scholar 

  • O'nions, R. K. (1987),Relationships between Chemical and Convective Layering in the Earth, Journal of the Geological Society of London144, 259–274.

    Google Scholar 

  • Oxburgh, E. R. andTurcotte, D. L. (1974),Thermal Gradients and Regional Metamorphism in Overthrust Terrains with Special Reference to the Eastern Alps, Schweizerische Mineralogische und Petrographische Mitteilungen54, 641–662.

    Google Scholar 

  • Page, B. M. (1970),Sur-Nacimiento Fault Zone of California—Continental Margin Tectonics, Geological Society of America Bulletin81, 667–689.

    Google Scholar 

  • Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S., andHofmann, A. W. (1984),Hafnium/Rare Earth Element Fractionation in the Sedimentary System and Crustal Recycling into the Earth's Mantle, Earth and Planetary Science Letters69, 365–378.

    Google Scholar 

  • Peacock, S. M. (1987),Thermal Effects of Metamorphic Fluids in Subduction Zones, Geology15, 1057–1060.

    Google Scholar 

  • Piper, D. J. W., von Huene, R., andDuncan, J. R. (1973),Late Quaternary Sedimentation in the Active Eastern Aleutian Trench, Geology1, 19–22.

    Google Scholar 

  • Plafker, G. (1965),Tectonic Deformation Associated with the 1964 Alaska Earthquake, Science148, 1675–1687.

    Google Scholar 

  • Platt, J. P. (1986),Dynamics of Orogenic Wedges and the Uplift of High-Pressure Metamorphic Rocks, Geological Society of America Bulletin,97, 1037–1053.

    Google Scholar 

  • Platt, J. P., Leggett, J. K., Young, J., Raza, H., andAlam, S. (1985),Large-Scale Sediment Underplating in the Makran Accretionary Prism, Southwest Pakistan, Geology13, 507–511.

    Google Scholar 

  • Prince, R. A. andKulm, L. D. (1975),Crustal Rupture and Initiation of Imbricate Thrusting in the Peru-Chile Trench, Geological Society of America Bulletin86, 1639–1653.

    Google Scholar 

  • Raymond, L. A. andTerranova, T. (1984),The Melange Problem—A Review, Geological Society of America Special Paper198, 1–5.

    Google Scholar 

  • Reck, B. H. (1987),Implications of Measured Thermal Gradients for Water Movement through the Northeast Japan Accretionary Prism, Journal of Geophysical Research92, 3683–3690.

    Google Scholar 

  • Ritger, S. D. (1985),Origin of Vein Structures in the Slope Deposits of Modern Accretionary Prisms, Geology13, 437–439.

    Google Scholar 

  • Rundle, J. B., Kanamori, H., andMcNally, K. C. (1984),An Inhomogeneous Fault Model for Gaps, Asperities, Barriers, and Seismicity Migration, Journal of Geophysical Research89, 10,219–10,231.

    Google Scholar 

  • Rutland, R. W. R. (1971),Andean Orogeny and Ocean Floor Spreading, Nature233, 252–255.

    Google Scholar 

  • Sample, J. C. andFisher, D. M. (1986),Duplex Accretion and Underplating in an Ancient Accretionary Complex, Kodiak Islands, Alaska, Geology14, 160–163.

    Google Scholar 

  • Sample, J. C. andMoore, J. C. (1987),Structural Style and Kinematics of an Underplated Slate Belt, Kodiak and Adjacent Islands, Alaska, Geological Society of America Bulletin,99, 7–20.

    Google Scholar 

  • Schliestedt, M. andMatthews, A. (1987),Transformation of Blueschist to Greenschist Facies Rocks as a Consequence of Fluid Infiltration, Sifnos (Cyclades), Greece, Contributions to Mineralogy and Petrology97, 237–250.

    Google Scholar 

  • Scholl, D. W. andMarlow, M. S. (1974),Sedimentary Sequences in Modern Pacific Trenches and the Deformed Circum-Pacific Eugeosyncline, Society of Economic Paleontologists and Mineralogists Special Publication19, 193–211.

    Google Scholar 

  • Scholl, S. W., Marlow, M. S., andCooper, A. K. (1977),Sediment Subduction and Offscraping at Pacific Margins, American Geophysical Union Maurice Ewing Series1, 199–210.

    Google Scholar 

  • Scholl, D. W., Vallier, T. L., andStevenson, A. J. (1982),Sedimentation and Deformation in the Amlia Fracture Zone Sector of the Aleutian Trench, Marine Geology,48, 105–134.

    Google Scholar 

  • Scholl, D. W., Vallier, T. L., andStevenson, A. J. (1983),Arc, Forearc, and Trench Sedimentation and Tectonics: Amlia Corridor of the Aleutian Ridge, American Association of Petroleum Geologists Memoir34, 414–439.

    Google Scholar 

  • Scholl, D. W., von Huene, R., Vallier, T. L., andHowell, T. G. (1980),Sedimentary Masses and Concepts about Tectonic Processes at Underthrust Ocean Margins, Geology8, 564–568.

    Google Scholar 

  • Schweller, W. J. andKulm, L. D. (1978a)Extensional Rupture of Oceanic Crust in the Chile Trench, Marine Geology28, 271–291.

    Google Scholar 

  • Schweller, W. J. andKulm, L. D. (1978b),Depositional Patterns and Channelized Sedimentation in Active Eastern Pacific Trenches, InSedimentation in Submarine Canyons, Fans, and Trenches (eds. Stanley, D. J., and Kelling, G.) (Dowden, Hutchison, and Ross, 1978) pp. 311–329.

  • Schweller, W. J., Kulm, L. D., andPrince, R. A. (1981),Tectonics, Structure, and Sedimentary Framework of the Peru-Chile Trench, Geological Society of America Memoir154, 323–349.

    Google Scholar 

  • Seely, D. R. (1977),The Significance of Landward Vergence and Oblique Structural Trends on Trench Inner Slopes, American Geophysical Union Maurice Ewing Series1, 187–198.

    Google Scholar 

  • Seely, D. R. (1979),The Evolution of Structural Highs Bordering Major Forearc Basins, American Association of Petroleum Geologists Memoir29, 245–260.

    Google Scholar 

  • Seely, D. R., Vail, P. R., andWalton, G. G.,Trench Slope Model, InGeology of the Continental Margins (eds. Burk, C. A., and Drake, C. L.) (Springer-Verlag, New York, 1974) pp. 249–260.

    Google Scholar 

  • Shepherd, G. L. andMoberly, R. (1981),Coastal Structure of the Continental Margin, Northwest Peru and Southwest Ecuador, Geological Society of America Memoir154, 351–392.

    Google Scholar 

  • Shi, Y. andWang, C. Y. (1985),High Pore Pressure Generation in Sediments in Front of the Barbados Ridge Complex, Geophysical Research Letters12, 773–776.

    Google Scholar 

  • Shipley, T. H. andMoore, G. F. (1986),Sediment Accretion Subduction, and Dewatering at the Base of the Trench Slope off Costa Rica: A Seismic Reflection View of the Décollement, Journal of Geophysical Research91, 2019–2028.

    Google Scholar 

  • Shipley, T. H., McMillen, K. J., Watkins, J. S., Moore, J. C. Sandoval-Ochoa, J. H., andWorzel, J. L. (1980),Continental Margin and Lower Slope Structures of the Middle America Trench near Acapulco (Mexico) Marine Geology35, 65–82.

    Google Scholar 

  • Shreve, R. L. andCloos, M. (1986),Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion, Journal of Geophysical Research91, 10,229–10,245.

    Google Scholar 

  • Sillitoe, R. H. (1972),Relation of Metal Provinces in Western America to Subduction of Oceanic Lithosphere, Geological Society of America Bulletin83, 813–818.

    Google Scholar 

  • Silver, E. A. (1971),Transitional Tectonics and Late Cenozoic Structure of the Continental Margin off Northernmost California, Geological Society of America Bulletin82, 1–22.

    Google Scholar 

  • Silver, E. A., Ellis, M. J., Breen, N. A., andShipley, T. H. (1985),Comments on the Growth of Accretionary Wedges, Geology13, 6–9.

    Google Scholar 

  • Speed, R. C. andLarue, D. K. (1982),Barbados: Architecture and Implications for Accretion, Journal of Geophysical Research87, 3633–3643.

    Google Scholar 

  • Spence, W. (1987),Slab Pull and the Seismotectonics of Subducting Lithosphere, Reviews of Geophysics25, 55–69.

    Google Scholar 

  • Spooner, E. T. C. andFyfe, W. S. (1973),Sub-Sea-Floor Metamorphism, Heat and Mass Transfer, Contributions to Mineralogy and Petrology42, 287–304.

    Google Scholar 

  • Staudigel, H., Hart, S. R., andRichardson, S. H. (1981),Alteration of Oceanic Crust: Processes and Timing, Earth and Planetary Science Letters52, 311–327.

    Google Scholar 

  • Stevens, S. H. andMoore, G. F. (1985),Deformational and Sedimentary Processes in Trench Slope Basins of the Western Sunda Arc, Indonesia, Marine Geology69, 93–112.

    Google Scholar 

  • Stockmal, G. S. (1983),Modeling of Large-Scale Accretionary Wedge Deformation, Journal of Geophysical Research88, 8271–8287.

    Google Scholar 

  • Stride, A. H., Belderson, R. H., andKenyon, N. H. (1982),Structural Grain, Mud Volcanoes and Other Features on the Barbados Ridge Complex Revealed by GLORIA Long Range Side-Scan Sonar, Marine Geology49, 187–196.

    Google Scholar 

  • Suppe, J. (1972),Interrelationships of High-Pressure Metamorphism, Deformation and Sedimentation in Franciscan Tectonics, U.S.A., International Geological Congress, 24th Session, Section 3, 552–559.

    Google Scholar 

  • Suppe, J. (1973),Geology of the Leech Lake—Ball Mountain Region, California, University of California Publications in the Geological Sciences107, 82 p.

  • Suzuki T. (1986),Melange Problem of Convergent Plate Margins in the Circum-Pacific Regions, Memoirs of the Faculty of Science, Kochi University, Series E, Geology,7, 23–48.

    Google Scholar 

  • Taira, A., Okada, H., Whitaker, J. H. M., andSmith, A. J. (1982),The Shimanto Belt of Japan: Cretaceous—Lower Miocene Active Margin Sedimentation, Geological Society of London Special Publication10, 5–26.

    Google Scholar 

  • Tajima, F. andKanamori, H. (1985),Aftershock Area Expansion and Mechanical Heterogeneity of Fault Zone within Subduction Zones, Geophysical Research Letters12, 345–348.

    Google Scholar 

  • Tera, F., Brown, L., Morris, J., Sacks I. S., Klein, J., andMiddleton, R. (1986),Sediment Incorporation in Island-Arc Magmas: Inferences from 10 Be, Geochimica et Cosmochimica Acta50, 535–550.

    Google Scholar 

  • Tharp, T. M. (1985),Numerical Models of Subduction and Forearc Deformation, Geophysical Journal of the Royal Astronomical Society80, 419–437.

    Google Scholar 

  • Thornburg, T. M. andKulm, L. D. (1987),Sedimentation in the Chile Trench: Depositional Morphologies, Lithofacies, and Stratigraphy, Geological Society of America Bulletin98, 33–52.

    Google Scholar 

  • Travis, P. B. (1953),LaBrea-Parinas Oil Field, Northwestern Peru, American Association of Petroleum Geologists Bulletin37, 2093–2118.

    Google Scholar 

  • Underwood, M. B. (1984),A Sedimentologic Perspective on Stratal Disruption within Sandstone-Rich Melange Terranes, Journal of Geology92, 369–386.

    Google Scholar 

  • Underwood, M. B. (1986a),Transverse Infilling of Central Aleutian Trench by Unconfined Turbidity Currents, Geo-Marine Letter6, 7–13.

    Google Scholar 

  • Underwood, M. B. (1986b),Sediment Provenance within Subduction Complexes—An Example from the Aleutian Forearc, Sedimentary Geology51, 57–73.

    Google Scholar 

  • Underwood, M. B. andBachman, S. B. (1982),Sedimentary Facies Associations within Subduction Complexes, Geological Society of London Special Publication10, 537–550.

    Google Scholar 

  • Underwood, M. B. andKarig, D. E. (1980),Role of Submarine Canyons in Trench and Trench-Slope Sedimentation, Geology8, 432–436.

    Google Scholar 

  • Uyeda, S. (1982),Subduction Zones: An Introduction to Comparative Subductology, Tectonophysics,81, 133–159.

    Google Scholar 

  • Uyeda, S. andKanamori H. (1979),Back-Arc Opening and the Mode of Subduction, Journal of Geophysical Research84, 1049–1061.

    Google Scholar 

  • van den Beukel, J. andWortel, R. (1986),Thermal Modelling of Arc-Trench Regions, Geologie en Mijnbouw65, 133–143.

    Google Scholar 

  • von Huene, R. (1981),Review of Early Results from Drilling of the IPOD-1 Active Margin Transects across Japan, Mariana, and Middle America Convergent Margins, Society of Economic Paleontologists Special Publication32, 57–66.

    Google Scholar 

  • von Huene, R. (1984a),Tectonic Processes along the Front of Modern Convergent Margins—Research of the Past Decade, Annual Reviews of Earth and Planetary Sciences12, 359–381.

    Google Scholar 

  • von Huene, R. (1984b),Structural Diversity along Modern Convergent Margins and the Role of Overpressured Pore Fluids in Subduction Zones, Bulletin de la Société Géologique de France, Series,7, 26, 207–219.

    Google Scholar 

  • von Huene, R. (1986a),To Accrete or Not Accrete, That Is the Question, Geologische Rundschau,75, 1–15.

    Google Scholar 

  • von Huene, R. (1986b),Seismic Images of Modern Convergent Margin Tectonic Structure, American Association of Petroleum Geologists, Studies in Geology,26, 60.

    Google Scholar 

  • von Huene, R. andKulm, L. D. (1973),Tectonic Summary of Leg 18, Initial Reports of the Deep Sea Drilling Project18, 961–976.

    Google Scholar 

  • von Huene, R. andLee, H. (1983),The Possible Significance of Pore Fluid Pressure in Subduction Zones, American Association of Petroleum Geologists Memoir34, 781–791.

    Google Scholar 

  • von Huene, R., Aubouin, J., Azema, J., Blackinton, G., Carter, J. A., Coublourn, W. T., Cowan, D. S., Curiale, J. A., Dengo, C. A., Fass, R. W., Harrison, W., Hesse, R., Hussong, D. M., Ladd, J. W., Muzylov, N., Shiki, T., Thompson, P. R., andWestberg, J. (1980),Leg 67: the Deep Sea Drilling Project Mid-America Trench Transect off Guatemala, Geological Society of America Bulletin91, 421–432.

    Google Scholar 

  • von Huene, R., Kulm, L. D., andMiller, J. (1985),Structure of the Frontal Part of the Andean Convergent Margin, Journal of Geophysical Research90, 5429–5442.

    Google Scholar 

  • von Huene, R., Langseth, M., Nasu, N., andOkada, H. (1982),A Summary of Cenozoic Tectonic History along IPOD Japan Trench Transect, Geological Society of America Bulletin93, 829–846.

    Google Scholar 

  • von Huene, R., Suess, E., andEmeis, K. (1987),Convergent Tectonics and Coastal Upwelling: A History of the Peru Continental Margin, Episodes10, 87–93.

    Google Scholar 

  • Walsh, J. B. (1981),Effect of Pore Pressure and Confining Pressure on Fracture Permeability, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts18, 429–435.

    Google Scholar 

  • Walsh, J. B. andBrace, W. F. (1984),The effect of Pressure on Porosity and the Transport Properties of Rock, Journal of Geophysical Research89, 9425–9431.

    Google Scholar 

  • Wang, C. Y. andShi, Y. L. (1984),On the Thermal Structure of Subduction Complexes: A Preliminary Study, Journal of Geophysical Research89, 7709–7718.

    Google Scholar 

  • Warsi, W. E. K., Hilde, T. W. C., andSearle, R. C. (1983),Convergence Structures of the Peru Trench between 10°S and 14°S, Tectonophysics99, 313–329.

    Google Scholar 

  • Weaver, B. L., Wood, D. A., Tarney, J. andJoron, J. L. (1986),Role of Subducted Sediment in the Genesis of Ocean-Island Basalts: Geochemical Evidence from South Atlantic Ocean Islands, Geology14, 275–278.

    Google Scholar 

  • Westbrook, G. K. andSmith, M. J. (1983),Long Décollements and Mud Volcanoes: Evidence from the Barbados Ridge Complex for the Role of High Pore-Fluid Pressure in the Development of an Accretionary Complex, Geology11, 279–283.

    Google Scholar 

  • Westbrook, G. K., Smith M. J., Peacock, J. H., andPoulter, M. J. (1982),Extensive Underthrusting of Undeformed Sediment beneath the Accretionary Complex of the Lesser Antilles Subduction Zone, Nature300, 625–628.

    Google Scholar 

  • White, R. S., (1982),Deformation of the Makran Accretionary Sediment Prism in the Gulf of Oman (Northwest Indian Ocean), Geological Society of London Special Publication10, 357–372.

    Google Scholar 

  • White, R. S. andKlitgord, K. (1976),Sediment Deformation and Plate Tectonics in the Gulf of Oman, Earth and Planetary Science Letters32, 199–209.

    Google Scholar 

  • White, W. M., andDupre, B. (1986),Sediment Subduction and Magma Genesis in the Lesser Antilles: Isotopic and Trace Element Constraints, Journal of Geophysical Research91, 5927–5941.

    Google Scholar 

  • Williams, P. R., Pigram, C. J., Dow, D. B., andAmiruddin (1984),Melange Production and the Importance of Shale Diapirism in Accretionary Terrains, Nature309, 145–146.

    Google Scholar 

  • Yardley, B. W. D. (1982),The Early Metamorphic History of the Haast Schists and Related Rocks of New Zealand, Contributions to Mineralogy and Petrology81, 317–327.

    Google Scholar 

  • Yeats, R. S. (1968),Southern California Structure, Sea Floor Spreading, and the History of the Pacific Basin, Geological Society of America Bulletin79, 1693–1702.

    Google Scholar 

  • Ziegler, A. M., Barrett, S. F., andScotese, C. R. (1981),Palaeoclimate, Sedimentation and Continental Accretion, Philosophical Transactions of the Royal Society of LondonA 301, 253–264.

    Google Scholar 

  • Zindler, A., Staudigel, H., andBatiza, R. (1984),Isotopic and Trace Element Geochemistry of young Pacific Seamounts: Implications for the Scale of Upper Mantle Heterogeneity, Earth and Planetary Science Letters70, 175–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloos, M., Shreve, R.L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. PAGEOPH 128, 455–500 (1988). https://doi.org/10.1007/BF00874548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874548

Key words

Navigation