Skip to main content
Log in

Metabolism of methanogens

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceeded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbanat DR & Ferry JG (1990) Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grownMethanosarcina thermophila. J. Bacteriol. 172: 7145–7150

    Google Scholar 

  • —— (1991) Resolution of component proteins in an enzyme complex fromMethanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88: 3272–3276

    Google Scholar 

  • Aceti DJ & Ferry JG (1988) Purification and characterization of acetate kinase from acetate-grownMethanosarcina thermophila. J. Biol. Chem. 263: 15444–15448

    Google Scholar 

  • Aldrich HC, Beimborn DB, Bokranz M & Schönheit P (1987) Immunocytochemical localization of methyl-coenzyme M reductase inMethanobacterium thermoautotrophicum. Arch. Microbiol. 147: 190–194

    Google Scholar 

  • Alex LA, Reeve JN, Orme-Johnson WH & Walsh CT (1990) Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase fromMethanobacterium thermoautotrophicum ΔH. Biochemistry 29: 7237–7244

    Google Scholar 

  • Ankel-Fuchs D & Thauer TK (1986) Methane formation from methyl-coenzyme M in a system containing methylcoenzyme M reductase, component B and reduced cobalamin. Eur. J. Biochem. 156: 171–177

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR & Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296

    Google Scholar 

  • Barber MJ, Siegel LM, Schauer NL, May HD & Ferry JG (1983) Formate dehydrogenase fromMethanobacterium formicicum. J. Biol. Chem. 258: 10839–10845

    Google Scholar 

  • Baron SF & Ferry JG (1989) Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase fromMethanobacterium formicicum. J. Bacteriol. 171: 3846–3853

    Google Scholar 

  • Becher B, Müller V & Gottschalk G (1992) N5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase ofMethanosarcina strain Göl is a Na+-translocating membrane protein. J. Bacteriol. 174: 7656–7660

    Google Scholar 

  • Beelen P van, Labro JFA, Keltjens JT, Geerts WJ & Vogels GD (1984a) Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem. 139: 359–365

    Google Scholar 

  • Beelen P van, Stassen PM, Bosch JWG, Vogels GD & Guijt W (1984b) Elucidation of the structure of methanopterin, a coenzyme fromMethanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur. J. Biochem. 138: 563–571

    Google Scholar 

  • Berkessel A (1991) Methyl-coenzyme M reductase: model studies on pentadentate nickel complexes and a hypothetical mechanism. Bioorg. Chem. 19: 101–115

    Google Scholar 

  • Blaut M & Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen inMethanosarcina barkeri. Eur. J. Biochem. 141: 217–222

    Google Scholar 

  • Blaut M, Müller V & Gottschalk G (1992) Energetics of methanogenesis studied in vesicular systems. J. Bioenerg. Biomembranes 24: 529–546

    Google Scholar 

  • Bobik TA, Olson KD, Noll KM & Wolfe RS (1987) Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate is a product of the methylreductase reaction inMethanobacterium. Biochem. Biophys. Res. Commun. 149: 455–460

    Google Scholar 

  • Bonacker LG, Baudner S, Mörschel E, Böcher R & Thauer RK (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase inMethanobacterium thermoautotrophicum. Eur. J. Biochem. 217: 587–595

    Google Scholar 

  • Bonacker LG, Baudner S & Thauer RK (1992) Differential expression of the 2 methyl-coenzyme M reductases inMethanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur. J. Biochem. 206: 87–92

    Google Scholar 

  • Börner G, Karrasch M & Thauer RK (1991) Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase fromMethanobacterium thermoautotrophicum (Marburg). FEBS Lett. 290: 31–34

    Google Scholar 

  • Bott M & Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur. J. Biochem. 168: 407–412

    Google Scholar 

  • Breitung J, Börner G, Scholz S, Linder D, Stetter KO & Thauer RK (1992) Salt dependence, kinetic properties and catalytic mechanism ofN 5-formylmethanofuran — tetrahydromethanopterin formyltransferase from the extreme thermophileMethanopyrus kandleri. Eur. J. Biochem. 210: 971–981

    Google Scholar 

  • Breitung J, Schmitz RA, Stetter KO & Thauer RK (1991)N 5,N 10-methnyltetrahydromethanopterin cyclohydrolase from the extreme thermophileMethanopyrus kandleri — increase of catalytic efficiency (k cat /K M ) and thermostability in the presence of salts. Arch. Microbiol. 156: 517–524

    Google Scholar 

  • Breitung J & Thauer RK (1990) Formylmethanofuran: tetrahydromethanopterin formyltransferase fromMethanosarcina barkeri — identification of N5-formyltetrahydromethanopterin as the product. FEBS Lett. 275: 226–230

    Google Scholar 

  • Conrad R & Thauer RK (1983) Carbon monoxide production byMethanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20: 229–232

    Google Scholar 

  • Coremans JMCC, Zwaan JW van der & Albracht SPJ (1989) Redox behaviour of nickel in hydrogenase fromMethanobacterium thermoautotrophicum (strain Marburg). Correlation between the nickel valence state and enzyme activity. Biochim. Biophys. Acta 997: 256–267

    Google Scholar 

  • Daniels L & Zeikus JG (1978) One carbon metabolism in methanogenic bacteria: analysis of short term fixation products of14CO2 and14CH3OH incorporated into whole cells. J. Bacteriol. 136: 75–84

    Google Scholar 

  • DeMoll E, Grahame DA, Harnly JM, Tsai L & Stadtman TC (1987) Purification and properties of carbon monoxide dehydrogenase fromMethanococcus vannielii. J. Bacteriol. 169: 3916–3920

    Google Scholar 

  • Denda K, Konishi J, Oshima T, Date T & Yoshida M (1988a) The membrane-associated ATPase fromSulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its subunit. J. Biol. Chem. 263: 6012–6015

    Google Scholar 

  • —— (1988b) Molecular cloning of the beta-subunit of a possible non-F1-F0-type ATP synthase from the acidothermophilic archaebacteriumSulfolobus acidocaldarius. J. Biol. Chem. 263: 17251–17257

    Google Scholar 

  • Deppenmeier U, Blaut M & Gottschalk G (1991) H2: heterodisulfide oxidoreductase, a second energy conserving system in the methanogenic strain Göl. Arch. Microbiol. 155: 272–277

    Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A & Gottschalk G (1990) Reduced coenzyme F420 heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc. Natl. Acad. Sci. USA 87: 9449–9453

    Google Scholar 

  • Deppenmeier U, Blaut M, Schmidt B & Gottschalk G (1992) Purification and properties of a F420-nonreactive, membrane-bound hydrogenase fromMethanosarcina strain Göl. Arch. Microbiol. 157: 505–511

    Google Scholar 

  • DiMarco AA, Donnelly MI & Wolfe RS (1986) Purification of the 5,10-methenyltetrahydromethanopterin cyclohydrolase fromMethanobacterium thermoautotrophicum. J. Bacteriol. 168: 1372–1377

    Google Scholar 

  • DiMarco AA, Sment KA, Konisky J & Wolfe RS (1990) The formylmethanofuran tetrahydromethanopterin formyltransferase fromMethanobacterium thermoautotrophicum ΔH-nucleotide sequence and functional expression of the cloned gene. J. Biol. Chem. 265: 472–476

    Google Scholar 

  • Doddema HJ, Hutten TJ, Drift C van der & Vogels GD (1978) ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex ofMethanobacterium thermoautotrophicum. J. Bacteriol. 136: 19–23

    Google Scholar 

  • Donnelly MI, Escalante-Semerena JC, Rinehart KL & Wolfe RS (1985) Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts ofMethanobacterium. Arch. Biochem. Biophys. 242: 430–439

    Google Scholar 

  • Donnelly MI & Wolfe RS (1986) The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from CO2. J. Biol. Chem. 261: 16653–16659

    Google Scholar 

  • Drake HL, Hu S & Wood HG (1981) Purification of five components ofClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahy drofolate. J. Biol. Chem. 256: 11137–11144

    Google Scholar 

  • Dybas M & Konisky J (1992) Energy transduction in the methanogenMethanococcus voltae is based on a sodium current. J. Bacteriol. 174: 5575–5583

    Google Scholar 

  • Eggen RIL, Geerling ACM, Boshoven ABP & Vos WM de (1991a) Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene fromMethanothrix soehngenii inEscherichia coli. J. Bacteriol. 173: 6383–6389

    Google Scholar 

  • Eggen RIL, Geerling ACM, Jetten MSM & Vos WM de (1991b). Cloning, expression, and sequence analysis of the genes for the carbon monoxide dehydrogenase ofMethanothrix soehngenii. J. Biol. Chem. 266: 6883–6887

    Google Scholar 

  • Eirich LD, Vogels GD & Wolfe RS (1978) Proposed structure for coenzyme F420 fromMethanobacterium. Biochemistry 17: 4583–4593

    Google Scholar 

  • Ekiel I, Jarrell KF & Sprott GD (1985a) Amino acid biosynthesis and sodium-dependent transport inMethanococcus voltae, as revealed by13C NMR. Eur. J. Biochem. 149: 437–444

    Google Scholar 

  • Ekiel I, Smith ICP & Sprott GD (1983) Biosynthetic pathways inMethanospirillum hungatei as determined by13C nuclear magnetic resonance. J. Bacteriol. 156: 316–326

    Google Scholar 

  • Ekiel I, Sprott GD & Patel GB (1985b) Acetate and CO2 assimilation inMethanothrix concilii. J. Bacteriol. 162: 905–908

    Google Scholar 

  • Ellefson WL & Wolfe RS (1981) Component C of the methyl coenzyme M methylreductase system ofMethanobacterium. J. Biol. Chem. 256: 4259–4262

    Google Scholar 

  • Ellermann J, Hedderich R, Böcher R & Thauer RK (1988) The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) fromMethanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 172: 669–677

    Google Scholar 

  • Enßle M, Zirngibl C, Linder D & Thauer RK (1991) Coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin dehydrogenase in methanol grownMethanosarcinabarkeri. Arch. Microbiol. 155: 483–490

    Google Scholar 

  • Eyzaguirre J, Jansen K & Fuchs G (1982) Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum. Arch. Microbiol. 132: 67–74

    Google Scholar 

  • Färber G, Keller W, Kratky B, Jaun B, Pfaltz A, Spinner C, Kobelt A & Eschenmoser A (1991) Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on X-ray analysis of 12,12-Diepi-F430 pentamethylester and on NMR spectroscopy. Helv. Chim. Acta 74: 697–716

    Google Scholar 

  • Ferry JG (1992) Methane from acetate. J. Bacteriol. 174: 5489–5495

    Google Scholar 

  • Fiebig K & Friedrich B (1989) Purification of the F420-reducing hydrogenase fromMethanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 184: 79–88

    Google Scholar 

  • Fisher R & Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate inMethanosarcina barkeri. Arch. Microbiol. 151: 459–465

    Google Scholar 

  • —— (1990) Ferredoxin-dependent methane formation from acetate in cell extracts ofMethanosarcina barkeri (strain MS). FEBS Lett. 269: 368–372

    Google Scholar 

  • Fox JA, Livingston DJ, Orme-Johnson WM & Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase fromMethanobacterium thermoautotrophicum: a) Purification and characterization. b) kinetic and hydrogen transfer studies. Biochemistry 26: 4219–4227

    Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39: 181–213

    Google Scholar 

  • Fuchs G & Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Arch. Microbiol. 118: 121–125

    Google Scholar 

  • —— (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation inMethanobacterium thermoautotrophicum. Arch. Microbiol. 127: 267–272

    Google Scholar 

  • Fuchs G, Stupperich E & Thauer RK (1978) Acetate assimilation and synthesis of alanine, apartate, and glutamate inMethanobacterium thermoautotrophicum. Arch. Microbiol. 117: 61–66

    Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol. Rev. 87: 297–308

    Google Scholar 

  • Gärtner P, Ecker A, Fischer R, Linder D, Fuchs G & Thauer RK (1993) Purification and properties ofN 5-methyltetrahydromethanopterin: coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum. Eur. J. Biochem. 213: 537–545

    Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K & Yoshida M (1989a) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86: 6661–6665

    Google Scholar 

  • Gogarten JP, Rausch T, Bernasconi P, Kibak H & Taiz L (1989b) Molecular evolution of H+-ATPases. I.Methanococcus andSulfolobus are monophyletic with respect to eucaryotes and eubacteria. Z. Naturforsch. 44c: 641–650

    Google Scholar 

  • Grahame DA & Stadtman TC (1987) Carbon monoxide dehydrogenase fromMethanosarcina barkeri: disaggregation, purification, and physicochemical properties of the enzyme. J. Biol. Chem. 26: 3706–3712

    Google Scholar 

  • —— (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266: 22227–22233

    Google Scholar 

  • —— (1993) Redox enzymes of methanogens: physicochemical properties of selected, purified oxidoreductases. In: Ferry JG (Ed) Methanogenesis (pp 335–359) Capman & Hall, New York

    Google Scholar 

  • Haase P, Deppenmeier U, Blaut M & Gottschalk G (1992) Purification and characterization of F420H2 dehydrogenase fromMethanolobus tindarius. Eur. J. Biochem. 203: 527–531

    Google Scholar 

  • Halboth S & Klein A (1992)Methanococcus voltae harbors 4 gene clusters potentially encoding 2 <NiFe> and 2 <NiFeSe> hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol. Gen. Genet. 233: 217–224

    Google Scholar 

  • Hartzell PL, Donnelly MI & Wolfe RS (1987) Incorporation of coenzyme M into component C of methylcoenzyme M duringin vitro methanogenesis. J. Biol. Chem. 262: 5581–5586

    Google Scholar 

  • Hedderich R, Berkessel A & Thauer RK (1989) Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett. 255: 67–71

    Google Scholar 

  • —— (1990) Purification and properties of heterodisulfide reductase fromMethanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193: 255–261

    Google Scholar 

  • Heiden S, Hedderich R, Setzke E & Thauer RK (1993) Purification of a cytochromeb-containing H2: heterodisulfide oxidoreductase complex from membranes ofMethanosarcina barkeri. Eur. J. Biochem. 213: 529–525

    Google Scholar 

  • Holder U, Schmidt DE, Stupperich E & Fuchs G (1985) Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum. Arch. Microbiol. 141: 225–238

    Google Scholar 

  • Hugenholtz J, Ivey DM & Ljungdahl LG (1987) Carbon monoxide-driven electron transport inClostridium thermoautotrophicum membranes. J. Bacteriol. 169: 5845–5847

    Google Scholar 

  • Ihara K & Mukohata Y (1991) The ATP synthase ofHalobacterium salinarum (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch. Biochem. Biophys. 286: 111–116

    Google Scholar 

  • Inatomi KI (1986) Characterization and purification of the membrane-bound ATPase of the archaebacteriumMethanosarcina barkeri. J. Bacteriol. 167: 837–841

    Google Scholar 

  • Inatomi KI, Eya S, Maeda M & Futai M (1989a) Amino acid sequence of the alpha and beta subunits ofMethanosarcina barkeri ATPase deduced from cloned genes. J. Biol. Chem. 264: 10954–10959

    Google Scholar 

  • Inatomi KI, Kamagata Y & Nakamura K (1993) Membrane ATPase from the aceticlastic methanogenMethanothrix thermophila. J. Bacteriol. 175: 80–84

    Google Scholar 

  • Inatomi KI & Maeda M (1988) Isolation of subunits fromMethanosarcina barkeri ATPase-nucleotide-binding site in the alpha-subunit. J. Bacteriol. 170: 5960–5962

    Google Scholar 

  • Inatomi KI, Maeda M & Futai M (1989b) Dicyclohexylcarbodiimide-binding protein is a subunit of theMethanosarcinabarkeri ATPase complex. Biochem. Biophys. Res. Commun. 162: 1585–1590

    Google Scholar 

  • Jablonski PE & Ferry JG (1991) Purification and properties of methyl coenzyme M methylreductase from acetate-grownMethanosarcina thermophila. J. Bacteriol. 173: 2481–2487

    Google Scholar 

  • Jablonski PE, Lu WP, Ragsdale SW & Ferry JG (1993) Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex fromMethanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. 268: 325–329

    Google Scholar 

  • Jaun A & Pflatz A (1988) Coenzyme F430 from methanogenic bacteria: methane formation by reductive carbon-sulphurbond cleavage of methyl sulphonium ions catalysed by F430 pentamethyl ester. J. Chem. Soc., Chem. Commun. 293–294

  • Jeris JS & McCarty PL (1965) The biochemistry of methane formation using14C-tracers. J. Water Poll. Control Fed. 37: 178–192

    Google Scholar 

  • Jetten MSM, Stams AJM & Zehnder AJB (1989a) Isolation and characterization of acetyl-coenzyme A synthetase fromMethanothrix soehngenii. J. Bacteriol. 171: 5430–5435

    Google Scholar 

  • —— (1989b) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase ofMethanothrix soehngenii. Eur. J. Biochem. 181: 437–441

    Google Scholar 

  • —— (1990) Purification and some properties of the methyl-CoM reductase ofMethanothrix soehngenii. FEMS Microbiol. Lett. 66: 183–186

    Google Scholar 

  • Jin CSL, Blanchard KD & Chen JS (1983) Two hydrogenases with distinct electron-carrier specificity and subunit composition inMethanobacterium formicicum. Biochim. Biophys. Acta 748: 8–20

    Google Scholar 

  • Johnson JL, Bastian NR, Schauer NL, Ferry JG & Rajagopalan KY (1991) Identification of molybdopterin guanine dinucleotide in formate dehydrogenase fromMethanobacterium formicicum. FEMS Microbiol. Lett. 77: 213–216

    Google Scholar 

  • Jones JB & Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenases ofMethanococcus vanniellii. J. Biol. Chem. 256: 656–663

    Google Scholar 

  • Kaesler B & Schönheit P (1989a) The role of sodium ions in methanogenesis — formaldehyde oxidation to CO2 and 2 H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2. Eur. J. Biochem. 184: 223–232

    Google Scholar 

  • —— (1989b) The sodium cycle in methanogenesis-CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur. J. Biochem. 186: 309–316

    Google Scholar 

  • Kamlage B & Blaut M (1992) Characterization of cytochromes fromMethanosarcina strain Göl and their involvement in electron transport during growth on methanol. J. Bacteriol. 174: 3921–3927

    Google Scholar 

  • Kandler O & Hippe H (1977) Lack of peptidoglycan in the cell walls ofMethanosarcina barkeri. Arch. Microbiol. 113: 57–60

    Google Scholar 

  • Kandler O & König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118: 141–152

    Google Scholar 

  • Karrasch M, Börner G, Enßle M & Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase fromMethanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194: 367–372

    Google Scholar 

  • Keltjens JT & Drift C van der (1986) Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39: 259–303

    Google Scholar 

  • Kenealy WR, Thompson TE, Schubert KR & Zeikus JG (1982) Ammonia assimilation and synthesis of alanine, aspartate, and glutamate inMethanosarcina barkeri andMethanobacterium thermoautotrophicum. J. Bacteriol. 150: 1357–1365

    Google Scholar 

  • Kenealy WR & Zeikus JG (1982) One-carbon metabolism in methanogens: evidence for synthesis of a two carbon cellular intermediate and unification of catabolism and anabolism inMethanosarcina barkeri. J. Bacteriol. 151: 932–941

    Google Scholar 

  • Kengen SWM, Daas PJH, Duits EFG, Keltjens JT, Drift C van der & Vogels GD (1992) Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction inMethanobacterium thermoautotrophicum. Biochim. Biophys. Acta 1118: 249–260

    Google Scholar 

  • Kengen SWM, Mosterd JJ, Nelissen RLH, Keltjens JT & Drift C van der (1988) Reductive activation of the methyltetrahydromethanopterin: coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum strain ΔH. Arch. Microbiol. 150: 405–412

    Google Scholar 

  • Klein A, Allmansberger R & Bokranz M (1988) Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol. Gen. Genet. 213: 409–420

    Google Scholar 

  • Kobelt A, Pfaltz A, Ankel-Fuchs D & Thauer RK (1987) The L-form of N-7-mercaptoheptanoyl-0-phosphothreonine is the enantiomer active as component B in methyl-CoM reduction to methane. FEBS Lett. 214: 265–268

    Google Scholar 

  • Konheiser U, Pasti G, Bollschweiler C & Klein A (1984) Physical mapping of genes coding for two subunits of methyl CoM reductase component C ofMethanococcus voltae. Mol. Gen. Genet. 198: 146–152

    Google Scholar 

  • König H, Nusser E & Stetter KD (1985) Glycogen inMethanolobus andMethanococcus. FEMS Microbiol. Lett. 28: 265–269

    Google Scholar 

  • Krzycki J & Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase fromMethanosarcina barkeri. J. Bacteriol. 158: 231–237

    Google Scholar 

  • Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA & Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20: 407–410

    Google Scholar 

  • Kühn W, Fiebig K, Walther R & Gottschalk G (1979) Presence of a cytochromeb 559 inMethanosarcina barkeri. FEBS Lett. 105: 271–274

    Google Scholar 

  • Kühn W & Gottschalk G (1983) Characterization of the cytochromes occurring inMethanosarcina species. Eur. J. Biochem. 135: 89–94

    Google Scholar 

  • Länge S & Fuchs G (1985) Tetrahydromethanopterin, a coenzyme involved in autotrophic acetylcoenzyme A synthesis from 2 CO2 inMethanobacterium. FEBS Lett. 181: 303–306

    Google Scholar 

  • Länge S & Fuchs G (1987) Autotrophic synthesis of activated acetic acid from CO2 inMethanobacterium thermoautotrophicum-synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur. J. Biochem. 163: 147–154

    Google Scholar 

  • Lin S-K & Jaun B (1991) Coenzyme F430 from methanogenic bacteria: detection of a paramagnetic methylnickel (II) derivative of the pentymethylester by2H-MNR spectroscopy. Helv. Chim. Acta 74: 1725–1738

    Google Scholar 

  • Liu Y, Boone DR & Choy C (1990)Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40: 111–116

    Google Scholar 

  • Lovley DR, White RH & Ferry JG (1984) Identification of methylcoenzyme M as an intermediate in methanogenesis from acetate inMethanosarcina sp. J. Bacteriol. 160: 521–525

    Google Scholar 

  • Lübben M & Schäfer G (1987) A plasma-membrane associated ATPase from the thermoacidophilic archaebacteriumSulfolobus acidocaldarius. Eur. J. Biochem. 164: 533–540

    Google Scholar 

  • Lundie LL & Ferry JG (1989) Activation of acetate byMethanosarcina thermophila. Purification and characterization of phosphotransacctylasc. J. Biol. Chem. 264: 18392–19396

    Google Scholar 

  • Ma K, Linder D, Stetter KO & Thauer RK (1991) Purification and properties ofN 5,N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophileMethanopyrus kandleri. Arch. Microbiol. 155: 593–600

    Google Scholar 

  • Ma K & Thauer RK (1990)N 5,N 10-Methylenetetrahydromethanopterin reductase fromMethanosarcina barkeri. FEMS Microbiol. Lett. 70: 119–124

    Google Scholar 

  • Mathrani I, Boone DR, Mah RA, Fox GE & Lan PP (1988)Methanohalophilus zhilinae sp. nov., an alkaliphilic halophilic methylotrophic methanogen. Int. J. Syst. Bacteriol. 38: 139–142

    Google Scholar 

  • Mayer F, Rohde M, Salzmann M, Jussofie A & Gottschalk G (1988) The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic strain Göl that contains components of the methylreductase system. J. Bacteriol. 170: 1438–1444

    Google Scholar 

  • Meijden P van der, Heythuysen HJ, Pouwels FP, Houwen FP & Drift C van der (1983a) Methyltransferase involved in methanol conversion byMethanosarcina barkeri. Arch. Microbiol. 134: 238–242

    Google Scholar 

  • Meijden P van der, Heythusen HJ, Sliepenbeek H, Houwen FP & Drift C van der (1983b) Activation and inactivation of methanol: 2-mercaptoethanesulfonic acid methyltransferase fromMethanosarcina barkeri. J. Bacteriol. 153: 6–11

    Google Scholar 

  • Meijden P van der, Jansen B, Drift C van der & Vogels GD (1983c) Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes fromMethanosarcina barkeri. FEMS Microbiol. Lett. 19: 247–251

    Google Scholar 

  • Meijden P van der, Te Brömmelstroet BE, Poirot CM, Drift C van der & Vogels GD (1984) Purification and properties of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase fromMethanosarcina barkeri. J. Bacteriol. 160: 629–635

    Google Scholar 

  • Miller TL & Wolin MJ (1985)Methanosphaera stadtmanii, gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141: 116–122

    Google Scholar 

  • Mountfort DO (1978) Evidence for ATP synthesis driven by a proton gradient inMethanosarcina barkeri. Biochem. Biophys. Res. Commun. 85: 1346–1350

    Google Scholar 

  • Moura I, Moura JJG, Santos H, Xavier AV, Burch G, Peck Jr. HD & LeGall J (1983) Proteins containing the factor F430 fromMethanosarcina barkeri andMethanobacterium thermoautotrophicum. Isolation and properties. Biochim. Biophys. Acta 742: 84–90

    Google Scholar 

  • Mukhopadhyay B & Daniels L (1989) Aerobic purification ofN 5,N 10-methylenetetrahydromethanopterin dehydrogenase, separated fromN 5,N 10-methenyltetrahydromethanopterin cyclohydrolase, fromMethanobacterium thermoautotrophicum strain Marburg. Can. J. Microbiol. 35: 499–507

    Google Scholar 

  • Müller V, Blaut M & Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (Ed) Methanogenesis (pp 360–406) Chapman & Hall, New York

    Google Scholar 

  • Muth E, Mörschel E & Klein A (1987) Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase fromMethanococcus voltae. Eur. J. Biochem. 169: 571–577

    Google Scholar 

  • Naumann E, Fahlbusch K & Gottschalk G (1984) Presence of a trimethylamine: HS coenzyme M methyltransferase inMethanosarcina barkeri. Arch. Microbiol. 138: 79–83

    Google Scholar 

  • Ni SS & Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen,Methanolobus siciliae HI350, from an oil well, characterization ofM. siciliae T4/MT, and emendation ofM. siciliae. Int. J. Syst. Bacteriol. 41: 410–416

    Google Scholar 

  • Noll KM, Rinehart Jr. KL, Tanner RS & Wolfe RS (1986) Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system ofMethanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83: 4238–4242

    Google Scholar 

  • Ossmer R, Mund T, Hartzell P, Konheiser U & Kohring GW (1986) Immunocytochemical localization of component C of the methylreductase system inMethanococcus voltae andMethanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83: 5789–5792

    Google Scholar 

  • Peck MW & Archer DB (1987) Improved assay of coenzyme F420 analogues from methanogenic bacteria. Biotechn. Techn. 1: 279–284

    Google Scholar 

  • Peinemann S, Müller V, Blaut M & Gottschalk G (1988) Bioenergetics of methanogenesis from acetate byMethanosarcina barkeri. J. Bacteriol. 170: 1369–1372

    Google Scholar 

  • Pellerin P, Gruson B, Prensier G, Albagnac G & Debeire P (1987) Glycogen inMethanothrix. Arch. Microbiol. 146: 377–381

    Google Scholar 

  • Pine MJ & Barker HA (1956) Studies on the methane formation. XII. The pathway of hydrogen in the acetate formation. J. Bacteriol. 71: 644–648

    Google Scholar 

  • Poirot CM, Kengen SWM, Walk E, Keltjens JT & Drift C van der (1987) Formation of methylcoenzyme M from formaldehyde by cell-free extracts ofMethanobacterium thermoautotrophicum. Evidence for the involvement of a corrinoid containing methyltransferase. FEMS Microbiol. Lett. 40: 7–13

    Google Scholar 

  • Przybyla AE, Robbins J, Menon M & Peck Jr. HD (1992) Structure-function relationship among the nickel-containing hydrogenases. FEMS Microbiol. Rev. 88: 109–136

    Google Scholar 

  • Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26: 263–300

    Google Scholar 

  • Reeve JN & Beckler GS (1990) Conservation of primary structure in procaryotic hydrogenases. FEMS Microbiol. Rev. 87: 419–424

    Google Scholar 

  • Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW & Krzycki JA (1989) A hydrogenase-linked gene inMethanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc. Natl. Acad. Sci. USA 86: 3031–3035

    Google Scholar 

  • Rospert S, Breitung J, Ma K, Schwörer B, Zirngibl C, Thauer RK, Linder D, Huber R & Huber R (1991) Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophileMethanopyrus kandleri. Arch. Microbiol. 156: 49–55

    Google Scholar 

  • Rospert S, Linder D, Ellermann J & Thauer RK (1990) Two genetically distinct methyl-coenzyme M reductases inMethanobacterium thermoautotrophicum strain Marburg and ΔH. Eur. J. Biochem. 194: 871–877

    Google Scholar 

  • Schäfer G & Meyering-Vos M (1992) F-type or V-type—the chimeric nature of the archaebacterial ATP synthase. Biochim. Biophys. Acta 1101: 232–235

    Google Scholar 

  • Schauer NL & Ferry JG (1980) Metabolism of formate inMethanobacterium formicicum. J. Bacteriol. 142: 800–807

    Google Scholar 

  • —— (1986) Composition of the coenzyme F420-dependent formate dehydrogenase fromMethanobacterium formicicum. J. Bacteriol. 165: 405–411

    Google Scholar 

  • Schmitz RA, Richter M, Linder D & Thauer RK (1992) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeonMethanobacterium wolfei. Eur. J. Biochem. 207: 559–565

    Google Scholar 

  • Schönheit P & Perski HJ (1983) ATP synthesis driven by potassium diffusion potential inMethanobacterium thermoautotrophicum is stimulated by sodium. FEMS Microbiol. Lett. 20: 263–267

    Google Scholar 

  • Sherf BA & Reeve JN (1990) Identification of themcrD gene product and its association with component C of methyl coenzyme M methylreductase inMethanococcus vannielii. J. Bacteriol. 172: 1828–1833

    Google Scholar 

  • Shieh J & Whitman WB (1988) Autotrophic acetyl coenzyme A biosynthesis inMethanococcus maripalustris. J. Bacteriol. 170: 3072–3079

    Google Scholar 

  • —— (1987) Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J. Bacteriol. 169: 5327–5329

    Google Scholar 

  • Shuber AP, Orr EC, Recny MA, Schendel PF, May HD, Schauer NL & Ferry JG (1986) Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes fromMethanobacterium thermoautotrophicum. J. Biol. Chem. 261: 12942–12947

    Google Scholar 

  • Simpson PG & Whitman WB (1993) Anabolic pathways in methanogens. In: Ferry JG (Ed) Methanogenesis (pp 445–472) Chapman & Hall, New York

    Google Scholar 

  • Smith MR & Mah RA (1966) Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14: 368–371

    Google Scholar 

  • —— (1980) Acetate as sole carbon and energy source for growth ofMethanosarcina strain 227. Appl. Environ. Microbiol. 39: 993–999

    Google Scholar 

  • Sparling R & Daniels L (1990) Regulation of formate dehydrogenase activity inMethanococcus thermolithotrophicus. J. Bacteriol. 172: 1464–1469

    Google Scholar 

  • Stan-Lotter H, Bowman EM & Hochstein LI (1991) Relationship of the membrane ATPase fromHalobacterium saccharovorum to vacuolar ATPases. Arch. Biochem. Biophys. 284: 116–119

    Google Scholar 

  • Sumi M, Sato MH, Denda K, Date T & Yoshida M (1992) A DNA fragment homologous to F1-ATPase β-subunit was amplified from genomic DNA ofMethanosarcina barkeri — indication of an archaebacterial F-type ATPase. FEBS Lett. 314: 207–210

    Google Scholar 

  • Taylor CD & Wolfe RS (1974) Structure and methylation of coenzyme M (HS-CH2-CH2-SO 3 ). J. Biol. Chem. 249: 4879–4885

    Google Scholar 

  • Te Brömmelstroet BE, Hensgens CMH, Keltjens JT, Drift C van der & Vogels GD (1990a) Purification and properties of 5,10-methylenctetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, fromMethanobacterium thermoautotrophicum. J. Biol. Chem. 265: 1852–1857

    Google Scholar 

  • Te Brömmelstroet BW, Geerts WJ, Keltjens JT, Drift C van der & Vogels GD (1991) Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, fromMethanosarcina barkeri. Biochim. Biophys. Acta 1079: 293–302

    Google Scholar 

  • Te Brömmelstroet BW, Hensgens CMH, Geerts JW, Keltjens JT, Drift C van der & Vogels GD (1990b) Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase fromMethanosarcina barkeri. J. Bacteriol. 172: 564–571

    Google Scholar 

  • Terlesky KC & Ferry JG (1988) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-boundhydrogenase in acetate-grownMethanosarcina thermophila. J. Biol. Chem. 263: 4075–4079

    Google Scholar 

  • Terlesky KC, Nelson MJK & Ferry JG (1986) Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grownMethanosarcina thermophila. J. Bacteriol. 168: 1053–1058

    Google Scholar 

  • Walsh C (1986) Naturally occurring 5-deazaflavins: biological redox roles. Acc. Chem. Res. 19: 216–221

    Google Scholar 

  • Weil CF, Cram DS, Sherf BA & Reeve JN (1988) Structure and comparative analysis of the genes encoding component C of methyl coenzyme M methylreductase in the extremely thermophilic archaebacteriumMethanothermus fervidus. J. Bacteriol. 170: 4718–4726

    Google Scholar 

  • Weimer PJ & Zeikus JG (1979) Acetate assimilation pathway ofMethanosarcina barkeri. J. Bacteriol. 137: 332–339

    Google Scholar 

  • White RH & Zhou D (1993) Biosynthesis of the coenzymes in methanogens. In: Ferry JG (Ed) Methanogenesis (pp 410–444) Chapman & Hall, New York

    Google Scholar 

  • Winner C & Gottschalk G (1989) H2 and CO2 production from methanol or formaldehyde by the methanogenic bacterium strain Göl treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 65: 259–264

    Google Scholar 

  • Yamazaki S (1982) A selenium-containing hydrogenase fromMethanococcus vanniellii. J. Biol. Chem. 257: 7926–7929

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W & Thauer RK (1977) Oxidoreductase involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J. Bacteriol. 132: 604–613

    Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (Ed) Methanogenesis (pp 128–206) Chapman & Hall, New York

    Google Scholar 

  • Zirngibl C, Hedderich R & Thauer RK (1990)N 5,N 10-methylenetetrahydromethanopterin dehydrogenase fromMethanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett. 261: 112–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaut, M. Metabolism of methanogens. Antonie van Leeuwenhoek 66, 187–208 (1994). https://doi.org/10.1007/BF00871639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871639

Key words

Navigation