Skip to main content
Log in

Export of the periplasmic maltose-binding protein ofEscherichia coli

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The export of the maltose-binding protein (MBP), themalE gene product, to the periplasm ofEschericha coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of threeE. coli proteins classified as “molecular chaperones” by their ability to stabilize precursor proteins for membrane translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arfmann, H.-A., Labitzke, R., and Wagner, K. G. (1977).Biopolymers 16, 1815–1826.

    Google Scholar 

  • Bacallao, R., Crooke, E., Shiba, K., Wickner, W., and Ito, K. (1986).J. Biol. Chem. 261, 12907–12910.

    Google Scholar 

  • Bankaitis, V. A., and Bassford, P. J., Jr. (1984).J. Biol. Chem. 259, 12193–12200.

    Google Scholar 

  • Bankaitis, V. A., and Bassford, P. J., Jr. (1985).J. Bacteriol. 161, 169–178.

    Google Scholar 

  • Bankaitis, V. A., Rasmussen, B. A., and Bassford, P. J., Jr. (1984).Cell 37, 243–252.

    Google Scholar 

  • Bankaitis, V. A., Ryan, J. P., Rasmussen, B. A., and Bassford, P. J., Jr. (1985).Curr. Top. Memb. Transp. 24, 105–150.

    Google Scholar 

  • Bassford, P. J., Jr., and Beckwith, J. (1979).Nature (London)277, 538–541.

    Google Scholar 

  • Bassford, P. J., Jr., Silhavy, T. J., and Beckwith, J. R. (1979).J. Bacteriol. 139, 19–31.

    Google Scholar 

  • Bayer, M. H., Costello, G. P., and Bayer, M. E. (1982).J. Bacteriol. 149, 758–767.

    Google Scholar 

  • Bedouelle, H., and Hofnung, M. (1981). InMembrane Transport and Neuroreceptors (Oxender, D., ed.), Alan R. Liss, New York, pp. 309–343.

    Google Scholar 

  • Bedouelle, H., Bassford, P. J., Jr., Fowler, A. V., Zabin, I., Beckwith, J., and Hofnung, M. (1980).Nature (London)285, 78–81.

    Google Scholar 

  • Benson, S. A., Bremer, E., and Silhavy, T. J. (1984).Proc. Natl. Acad. Sci. USA 81, 3830–3834.

    Google Scholar 

  • Bernstein, H. D. (1989).Cell 58, 1017–1019.

    Google Scholar 

  • Bieker, K. L., and Silhavy, T. J. (1989).Proc. Natl. Acad. Sci. USA 86, 968–972.

    Google Scholar 

  • Blobel, G., and Dobberstein, B. (1975).J. Cell Biol. 67, 835–851.

    Google Scholar 

  • Bochkareva, E. S., Lissin, N. M., and Girsohovich, A. S. (1988).Nature (London)336, 254–257.

    Google Scholar 

  • Bosch, D., de Boer, P., Bitter, W., and Tommassen, J. (1989).Biochim. Biophys. Acta 979, 69–76.

    Google Scholar 

  • Boyd, D., and Beckwith, J. (1989).Proc. Natl. Acad. Sci. USA 86, 9446–9450.

    Google Scholar 

  • Briggs, M. S., Gierasch, L. M., Zlotnick, A., Lear, J. D., and DeGrado, W. F. (1985).Science 228, 1096–1099.

    Google Scholar 

  • Cancedda, R., and Schlessinger, M. (1974).J. Bacteriol. 117, 290–301.

    Google Scholar 

  • Chen, L., Rhoads, D., and Tai, P. C. (1985).J. Bacteriol. 161, 973–980.

    Google Scholar 

  • Collier, D. N., and Bassford, P. J., Jr. (1989).J. Bacteriol. 171, 4640–4647.

    Google Scholar 

  • Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J., Jr. (1988).Cell 53, 273–283.

    Google Scholar 

  • Cover, W. H., Ryan, J. P., Bassford, P. J., Jr., Walsh, K. A., Bollinger, J., and Randall, L. L. (1987).J. Bacteriol. 169, 1794–1800.

    Google Scholar 

  • Crooke, E., and Wickner, W. (1987).Proc. Natl. Acad. Sci. USA 84, 5216–5220.

    Google Scholar 

  • Crooke, E., Brundage, L., Rice, M. and Wickner, W. (1988a).EMBO J. 7, 1831–1835.

    Google Scholar 

  • Crooke, E., Guthrie, B., Lecker, S., Lill, R., and Wickner, W. (1988b).Cell 54, 1003–1011.

    Google Scholar 

  • Cunningham, K., and Wickner, W. (1989).Proc. Natl. Acad. Sci. USA 86, 8630–8634.

    Google Scholar 

  • Dalbey, R. E., and Wickner, W. (1985).J. Biol. Chem. 260, 15925–15931.

    Google Scholar 

  • Date, T., Goodman, J. M., and Wickner, W. T. (1980).Proc. Natl. Acad. Sci. USA 77, 4669–4673.

    Google Scholar 

  • Davis, N. G., and Model, P. (1985).Cell 41, 607–614.

    Google Scholar 

  • Dean, D. A., Fikes, J. D., Gehring, K., Bassford, P. J., Jr., and Nikaido, H. (1989).J. Bacteriol. 171, 503–510.

    Google Scholar 

  • Dierstein, R., and Wickner, W. (1985).J. Biol. Chem. 260, 15919–15924.

    Google Scholar 

  • Duffaud, G. D., Lehnhardt, S. K., March, P. E., and Inouye, M. (1985).Curr. Top. Membr. Transp. 24, 65–104.

    Google Scholar 

  • Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saukinm, W., and Hofnung, M. (1984).J. Biol. Chem. 259, 10606–10613.

    Google Scholar 

  • Eilers, M., and Schatz, G. (1988).Cell 52, 481–483.

    Google Scholar 

  • Ellis, R. J., and Hemmingsen, S. M. (1989).Trends Biochem. Sci. 14, 339–342.

    Google Scholar 

  • Emr, S. D., and Bassford, P. J., Jr. (1982).J. Biol. Chem. 257, 5852–5860.

    Google Scholar 

  • Emr, S. D., and Silhavy, T. J. (1983).Proc. Natl. Acad. Sci. USA 80, 4599–4603.

    Google Scholar 

  • Emr, S. D., Hanley-Way, S., and Silhavy, T. J. (1981).Cell 23, 79–88.

    Google Scholar 

  • Engelman, D. M., and Steitz, T. A. (1981).Cell 23, 411–422.

    Google Scholar 

  • Ferenci, T., and Randall, L. L. (1979).J. Biol. Chem. 254, 9979–9981.

    Google Scholar 

  • Ferenci, T., and Silhavy, T. J. (1987).J. Bacteriol. 169, 5339–5342.

    Google Scholar 

  • Fikes, J. D., and Bassford, P. J., Jr. (1987).J. Bacteriol. 169, 2352–2359.

    Google Scholar 

  • Fikes, J. D., and Bassford, P. J., Jr. (1989).J. Bacteriol. 171, 402–409.

    Google Scholar 

  • Fikes, J. D., Bankaitis, V. A., Ryan, J. P., and Bassford, P. J., Jr. (1987).J. Bacteriol. 169, 2345–2351.

    Google Scholar 

  • Fikes, J. D., Barkocy-Gallagher, G. A., Klapper, D. G., and Bassford, P. J., Jr. (1990).J. Biol. Chem. 265, 3417–3423.

    Google Scholar 

  • Freudi, R., Schwarz, H., Kramps, S., Hindennach, I., and Henning, U. (1988).J. Biol. Chem. 263, 17084–17091.

    Google Scholar 

  • Gannon, P. M., Li, P., and Kumamoto, C. A. (1989).J. Bacteriol. 171, 813–818.

    Google Scholar 

  • Georgopoulos, C. P., and Hohn, B. (1978).Proc. Natl. Acac. Sci. USA 75, 131–135.

    Google Scholar 

  • Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989).Nature (London)337, 44–47.

    Google Scholar 

  • Goodman, J. M., Watts, C., and Wickner, W. (1981).Cell 24, 437–441.

    Google Scholar 

  • Hall, M. N., Gabay, J., and Schwartz, M. (1983).EMBO J. 2, 15–19.

    Google Scholar 

  • Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R., and Ellis, R. J. (1988).Nature (London)333, 330–334.

    Google Scholar 

  • Hendrix, R. W. (1979).J. Mol. Biol. 129, 375–392.

    Google Scholar 

  • Herrero, E., Jackson, M., Bassford, P. J., Sinden, D., and Holland, I. B. (1982).J. Bacteriol. 152, 133–139.

    Google Scholar 

  • Hohn, T., Hohn, B., Engel, A., Wurtz, M., and Smith, P. R. (1979).J. Mol. Biol. 129 359–373.

    Google Scholar 

  • Iino, T., and Sako, T. (1988).J. Biol. Chem. 263, 19077–19082.

    Google Scholar 

  • Iino, T., Takahashi, M., and Sako, T. (1987).J. Biol. Chem. 262, 7412–7417.

    Google Scholar 

  • Inouye, M., and Halegoua, S. (1980).Crit. Rev. Biochem. 7, 339–371.

    Google Scholar 

  • Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., and Inouye, M. (1982).Proc. Natl. Acad. Sci. USA 79, 3138–3141.

    Google Scholar 

  • Ito, K. (1984).Mol. Gen. Genet. 197, 204–208.

    Google Scholar 

  • Ito, K., and Beckwith, J. (1981).Cell 25, 143–150.

    Google Scholar 

  • Ito, K., Mandel, G., and Wickner, W. (1979).Proc. Natl. Acad. Sci. USA 76, 1199–1203.

    Google Scholar 

  • Ito, K., Bassford, P. J., Jr., and Beckwith, J. (1981).Cell 24, 707–717.

    Google Scholar 

  • Josefsson, L.-G., and Randall, L. L. (1981a).J. Biol. Chem. 256, 2504–2507.

    Google Scholar 

  • Josefsson, L.-G., and Randall, L. L. (1981b).Cell 25, 151–157.

    Google Scholar 

  • Kaiser, C. A., Preuss, D., Grisafi, P., and Botstein, D. (1987).Science 235, 312–317.

    Google Scholar 

  • Kendall, D. A., and Kaiser, E. T. (1988).J. Biol. Chem. 263, 7261–7265.

    Google Scholar 

  • Kendall, D. A., Boch, S. C., and Kaiser, E. T. (1986).Nature (London)321, 706–708.

    Google Scholar 

  • Koshland, D., and Botstein, D. (1980).Cell 25, 151–157.

    Google Scholar 

  • Kuhn, A., and Wickner, W. (1985).J. Biol. Chem. 260, 15914–15918.

    Google Scholar 

  • Kumamoto, C. A. (1989).Proc. Natl. Acad. Sci. USA 86, 5320–5324.

    Google Scholar 

  • Kumamoto, C. A., and Beckwith, J. (1983).J. Bacteriol. 154, 253–260.

    Google Scholar 

  • Kumamoto, C. A., and Beckwith, J. (1985).J. Bacteriol. 163, 267–274.

    Google Scholar 

  • Kumamoto, C. A., and Gannon, P. M. (1988).J. Biol. Chem. 263, 11554–11558.

    Google Scholar 

  • Kumamoto, C. A., and Nault, A. K. (1989).Gene 75, 167–175.

    Google Scholar 

  • Kusukawa, N., Yura, T., Ueguchi, C., Akiyama, Y., and Ito, K. (1989).EMBO J. 8, 3517–3521.

    Google Scholar 

  • Lee, C., Li, P., Inouye, H., Brickman, E. R., and Beckwith, J. (1989).J. Bacteriol. 171, 4609–4616.

    Google Scholar 

  • Lecker, S., Lill, R., Ziegelhoffer, T., Georgopoulos, C., Bassford, P. J., Jr., Kumamoto, C. A., and Wickner, W. (1989).EMBO J. 8, 2703–2709.

    Google Scholar 

  • Li, P., Beckwith, J., and Inouye, H. (1988).Proc. Natl. Acad. Sci. USA 85, 7685–7689.

    Google Scholar 

  • Lill, R., Crooke, E., Guthrie, B., and Wickner, W. (1988).Cell 54, 1013–1018.

    Google Scholar 

  • Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L. (1988).J. Biol. Chem. 263, 14790–14793.

    Google Scholar 

  • Liu, G., Topping, T. B., and Randall, L. L. (1989).Proc. Natl. Acad. Sci. USA 86, 9213–9217.

    Google Scholar 

  • Meyer, D. I. (1988).Trends Biochem. Sci. 13, 471–474.

    Google Scholar 

  • Michaelis, S., Hunt, J. F., and Beckwith, J. (1986).J. Bacteriol. 167, 160–167.

    Google Scholar 

  • Millan, J. L. S., Boyd, D., Dalbey, R., Wickner, W., and Beckwith, J. (1989).J. Bacteriol. 171, 5536–5541.

    Google Scholar 

  • Moreno, F., Fowler, A. V., Hall, M., Silhavy, T. J., Zabin, I., and Schwartz, M. (1980).Nature (London)286, 356–359.

    Google Scholar 

  • Müller, M., and Blobel, G. (1984).Proc. Natl. Acad. Sci. USA 81, 7421–7425.

    Google Scholar 

  • Oliver, D. B., and Beckwith, J. (1981).Cell 25, 765–772.

    Google Scholar 

  • Oliver, D. B., and Beckwith, J. (1982).J. Bacteriol. 150, 686–691.

    Google Scholar 

  • Park, S., Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L. (1988).Science 239, 1033–1035.

    Google Scholar 

  • Perlman, D., and Halvorson, H. O. (1983).J. Mol. Biol. 167, 391–409.

    Google Scholar 

  • Puziss, J. W., Fikes, J. D., and Bassford, P. J., Jr. (1989).J. Bacteriol. 171, 2303–2311.

    Google Scholar 

  • Randall, L. L. (1983).Cell 33, 231–240.

    Google Scholar 

  • Randall, L. L. (1987).Annu. Rev. Microbiol. 41, 507–541.

    Google Scholar 

  • Randall, L. L., and Hardy, S. J. S. (1975).Mol. Gen. Genet. 137, 151–160.

    Google Scholar 

  • Randall, L. L., and Hardy, S. J. S. (1977).Eur. J. Biochem. 75, 43–53.

    Google Scholar 

  • Randall, L. L., and Hardy, S. J. S. (1986).Cell 46, 921–928.

    Google Scholar 

  • Randall, L. L., and Hardy, S. J. S. (1989).Science 243, 1156–1159.

    Google Scholar 

  • Randall, L. L., Hardy, S. J. S., and Josefsson, L. -G. (1978).Proc. Natl. Acad. Sci. USA 75, 1209–1212.

    Google Scholar 

  • Rasmussen, B. A., and Bassford, P. J., Jr. (1985).J. Bacteriol. 161, 258–264.

    Google Scholar 

  • Rasmussen, B. A., and Silhavy, T. J. (1987).Genes Dev. 1, 185–196.

    Google Scholar 

  • Rasmussen, B. A., Bankaitis, V. A., and Bassford, P. J., Jr. (1984).J. Bacteriol. 160, 612–617.

    Google Scholar 

  • Rasmussen, B. A., MacGregor, C. H., Ray, P. H., and Bassford, P. J., Jr. (1985).J. Bacteriol. 164, 665–673.

    Google Scholar 

  • Rhoads, D. B., Tai, P. C., and Davis, B. D. (1984).J. Bacteriol. 159, 63–70.

    Google Scholar 

  • Rothman, J. A. (1989).Cell 59, 591–601.

    Google Scholar 

  • Ryan, J. P., and Bassford, P. J., Jr. (1985).J. Biol. Chem. 260, 14832–14837.

    Google Scholar 

  • Ryan, J. P., Duncan, M. C., Bankaitis, V. A., and Bassford, P. J., Jr. (1986a).J. Biol. Chem. 261, 3389–3395.

    Google Scholar 

  • Ryan, J. P., Fikes, J. D., Bankaitis, V. A., Duncan, M. C., and Bassford, P. J., Jr. (1986b). InMicrobiology 1986 (Leive, L., ed.), American Society for Microbiology, Washington, DC, pp. 254–259.

    Google Scholar 

  • Schmidt, M. G., Rollo, E. E., Grodberg, J., and Oliver, D. B. (1988).J. Bacteriol. 170, 3404–3414.

    Google Scholar 

  • Schwartz, M., Roa, M., and Debarbouille, M. (1981).Proc. Natl. Acad. Sci. USA 78, 2937–2941.

    Google Scholar 

  • Silhavy, T. J., Shuman, H. A., Beckwith, J., and Schwartz, M. (1977).Proc. Natl. Acad. Sci. USA 74, 5411–5415.

    Google Scholar 

  • Silhavy, T. J., Benson, S. A., and Emr, S. D. (1983).Microbiol. Rev. 47, 313–344.

    Google Scholar 

  • Sjöström, M., Wold, S., Wieslander, A., and Rilfors, L. (1987).EMBO J. 6, 823–831.

    Google Scholar 

  • Stader, J., Benson, S. A., and Silhavy, T. J. (1986).J. Biol. Chem. 261, 15075–15080.

    Google Scholar 

  • Stader, J. A., Gansheroff, L. J., and Silhavy, T. J. (1989).Genes Dev. 3, 1045–1052.

    Google Scholar 

  • Summers, R. G., and Knowles, J. R. (1989).J. Biol. Chem. 264, 20074–20081.

    Google Scholar 

  • Summers, R. G., Harris, C. R., and Knowles, J. R. (1989).J. Biol. Chem. 264, 20082–20088.

    Google Scholar 

  • Szczesna-Skopupa, E., Browne, N., Mead, D., and Kemper, B. (1988).Proc. Natl. Acad. Sci. USA 85, 738–742.

    Google Scholar 

  • Thom, J. R., and Randall, L. L. (1988).J. Bacteriol. 170, 5654–5661.

    Google Scholar 

  • Verner, K., and Schatz, G. (1988).Science 241, 1307–1313.

    Google Scholar 

  • Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983).J. Biol. Chem. 258, 7141–7148.

    Google Scholar 

  • von Heijne, G. (1983).Eur. J. Biochem. 133, 17–21.

    Google Scholar 

  • von Heijne, G. (1985).J. Mol. Biol. 184, 99–105.

    Google Scholar 

  • von Heijne, G. (1986).Nucleic Acids Res. 14, 4683–4690.

    Google Scholar 

  • von Heijne, G., Wickner, W., and Dalbey, R. E. (1988).Proc. Natl. Acad. Sci. USA 85, 3363–3366.

    Google Scholar 

  • Walter, P., and Lingappa, V. R. (1986).Annu. Rev. Cell Biol. 2, 499–516.

    Google Scholar 

  • Watanabe, M., and Blobel, G. (1989a).Proc. Natl. Acad. Sci. USA 86, 2248–2252.

    Google Scholar 

  • Watanabe, M., and Blobel, G. (1989b).Proc. Natl. Acad. Sci. USA 86, 2728–2732.

    Google Scholar 

  • Watanabe, M., and Blobel, G. (1989c).Cell 58, 695–705.

    Google Scholar 

  • Weiss, J. B., and Bassford, P. J., Jr. (1990).J. Bacteriol. 172, in press.

  • Weiss, J. B., Ray, P. H., and Bassford, P. J., Jr. (1988).Proc. Natl. Acad. Sci. USA 85, 8978–8982.

    Google Scholar 

  • Weiss, J. B., MacGregor, C. H., Collier, D. N., Fikes, J. D., Ray, P. H., and Bassford, P. J., Jr. (1989).J. Biol. Chem. 264, 3021–3027.

    Google Scholar 

  • Wickner, W. (1979).Annu. Rev. Biochem. 48, 23–45.

    Google Scholar 

  • Wu, H., and Tokunaga, M. (1986).Curr. Top. Microbiol. Immunol. 125, 128–157.

    Google Scholar 

  • Yamane, K., Ichihara, S., and Mizushima, S. (1987).J. Biol. Chem. 262, 2358–2362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassford, P.J. Export of the periplasmic maltose-binding protein ofEscherichia coli . J Bioenerg Biomembr 22, 401–439 (1990). https://doi.org/10.1007/BF00763175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763175

Key Words

Navigation