Skip to main content
Log in

Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Static and dynamic discharge patterns of bursting cold fibers in the lingual nerve of the cat were analysed at temperatures between 10 and 40°C. The period of the static burst discharge depends only on temperature and is not affected by the number of spikes per burst. The termination of an intraburst sequence of impulses can be predicted by the duration of the intraburst intervals. Irregular impulse patterns at low static temperatures show a unimodal interval distribution, whereas the interval histograms from irregular spike sequences at high temperatures have multiple peaks with nearly equal distances.

The dynamic responses to cooling steps of 5°C show a transient reduction of the burst period and a transient increase of the number of spikes per burst or the burst duration, respectively. In addition, the maximmum intraburst frequencies transiently increase while the frequency decay within the burst is continuously reduced. At low temperatures, the burst discharge is sometimes interrupted by a continuous impulse sequence of high frequency.

A model of temperature transduction is discussed on the basis of membrane processes which are particularly described for molluscan neurons. The results support the hypothesis that the bursts are triggered by an endogenously oscillating receptor potential. It is assumed that at high temperatures the oscillation continues but certain cycles fail to trigger impulses. The results during dynamic cooling are interpreted as a flattening of the oscillation which is transiently superposed by a depolarizing shift of the potential waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bade H, Braun HA, Hensel H (1979) Static burst parameters of lingual cold receptors in the cat. Pflügers Arch 382:1–5

    Google Scholar 

  • Barker JL, Gainer H (1975) Studies on bursting pacemaker potential activity in molluscan neurons. II. Regulation by divalent cations. Brain Res 84:479–500

    Google Scholar 

  • Braun HA, Bade H, Hensel H (1977) Frequency and bursting pattern of cold fibers related to an assumed oscillating receptor mechanism. Pflügers Arch 368:Suppl R47

    Google Scholar 

  • Braun HA, Bade H, Schäfer K, Hensel H (1978) Dynamic characteristics of cold fibre discharge in the cat. Pflügers Arch 373: Suppl. R67

    Google Scholar 

  • Carnevale NT, Wachtel H (1974) Slow oscillations in Aplysia bursting neurons are produced by the interaction of two currents. Physiologist 17:193

    Google Scholar 

  • Carpenter DO (1967) Temperature effects on pacemaker generation, membrane potential, and critical firing threshold inAplysia neurons. J Gen Physiol 50:1469–1484

    Google Scholar 

  • Carpenter DO (1970) Membrane potential produced directly by the Na+ pump inAplysia neurons. Comp Biochem Physiol 35:371–385

    Google Scholar 

  • Carpenter DO, Alving BO (1968) A contribution of electrogenic Na+ pump to membrane potential inAplysia neurons. J Gen Physiol 52:1–21

    Google Scholar 

  • Darian-Smith I, Dykes RW (1971) Peripheral neural mechanisms of thermal sensation. In: Dubner R, Kawamura Y (eds) Oral-facial sensory and motor mechanisms. Meredith Corporation, New York, pp 7–22

    Google Scholar 

  • Dykes RW (1975) Coding of steady and transient temperatures by cutaneous “cold” fibers serving the hand of monkeys. Brain Res 98:485–500

    Google Scholar 

  • Eckert R, Lux HD (1976) A voltage-sensitive persistent calcium conductance in neuronal somata ofHelix. J Physiol (Lond) 254:129–151

    Google Scholar 

  • Gola M (1976) Slow current changes underlying square shaped potential waves in warmed “Aplysia” neurons. Experientia 32:585–588

    Google Scholar 

  • Hensel H (1952) Physiologie der Thermorezeption. Ergebn Physiol 47:166–368

    Google Scholar 

  • Hensel H (1953) The time factor in thermoreceptor excitation. Acta Physiol Scand 29:109

    Google Scholar 

  • Hensel H (1976) Correlation of neural activity and thermal sensation in man. In: Zotterman Y (ed) Sensory function of the skin in primates. Pergamon Press, Oxford, pp 331–353

    Google Scholar 

  • Hensel H, Zotterman Y (1951) Quantitative Beziehungen zwischen der Entladung einzelner Kältefasern und der Temperatur. Acta Physiol Scand 23:291–319

    Google Scholar 

  • Iggo A (1970) The mechanism of biological temperature reception. In: Hardy JD, Gagge AP, Stolwijk JAJ (eds) Physiological and behavioral temperature regulation, Charles C. Thomas, Springfield, Ill, pp 291–407

    Google Scholar 

  • Iggo A, Young DW (1975) Cutaneous thermoreceptor and thermal nociceptors. In: Kornhuber HH (ed) The somatosensory system. Georg Thieme. Stuttgart, pp 5–25

    Google Scholar 

  • Johnston D (1976) Voltage clamp reveals basis for calcium regulation of bursting pacemaker potentials in “Aplysia” neurons. Brain Res 107:418–424

    Google Scholar 

  • Junge D, Stephens CL (1973) Cyclic variation of potassium conductance in a burst-generating neurons inAplysia. J Physiol (Lond) 235:155–181

    Google Scholar 

  • Kenshalo DR, Duclaux R (1977) Response characteristics of cutaneous cold receptors in the monkey. J Neurophysiol 40:319–332

    Google Scholar 

  • Kenshalo DR, Cormier D, Mellos M (1976) Some response properties of cold fibers to cooling. Prog Brain Res 43:129–141

    Google Scholar 

  • Meech RW (1974) Calcium influx induces a post-tatonic hyperpolarization inAplysia neurones. Comp Biochem Physiol 48A:387–395

    Google Scholar 

  • Meech RW (1976) Intracellular calcium and the control of membrane permeability. In: Calcium in biological system. Cambridge Symp Soc Exp Biol XXX, Cambridge, Cambridge University Press, p 161

    Google Scholar 

  • Pierau FK, Torrey P, Carpenter DO (1974) Mammalian cold receptor afferents: role of an electrogenic pump in sensory transduction. Brain Res 73:156–160

    Google Scholar 

  • Pierau FK, Torrey P, Carpenter D (1975) Effect of ouabain and potassium-free solution on mammalian thermosensitive afferents in vitro. Pflügers Arch 359:349–356

    Google Scholar 

  • Pierau FK, Ullrich J, Wurster, RD (1977) Effect of Ca2+ and EDTA on the bursting pattern of lingual cold receptors in cats. Proceedings of the International Union of Physiological Sciences Vol XIII, 597

    Google Scholar 

  • Schäfer K, Braun HA, Hensel H (1978) Dependence of cold fiber response from blood calcium level in the cat. Pflügers Arch 373:Suppl. R68

    Google Scholar 

  • Sperelakis N (1970) Effects of temperature on membrane potentials of excitable cells. In: Hardy JD, Gagge AP, Stolwijk JAJ (eds) Physiological and behavioral temperature regulation, Ch. C. Thomas, Springfield, Ill, pp 408–441

    Google Scholar 

  • Spray DC (1974) Metabolic dependence of frog cold receptor sensitivity. Brain Res 72:354–359

    Google Scholar 

  • Zerbst E (1978) Simulation und Modellanalyse primärer Erregungsprozesse an biologischen Membranen unter besonderer Berücksichtigung der Informationsaufnahme und-verarbeitung durch biologische Sinneszellen. In: v. Schneider B, Ranft U (Hrsg) Medizinische Informatik und Statistik. Simulationsmethoden in der Medizin und Biologie. Springer, Berlin Heidelberg New York, S 163–183

    Google Scholar 

  • Zerbst E, Dittberner KH, William E (1966) Ansätze zur quantitativen Analyse der Nachrichtenaufnahme und-verarbeitung in biologischen Rezeptoren. Helgoland, Wissensch Meeresunters 14:51–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, H.A., Bade, H. & Hensel, H. Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflügers Arch. 386, 1–9 (1980). https://doi.org/10.1007/BF00584180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584180

Key words

Navigation