Skip to main content
Log in

Regulation of proline catabolism in Pseudomonas aeruginosa PAO

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mutants of Pseudomonas aeruginosa deficient in the utilization of l-proline as the only carbon and nitrogen source have been found to be defective either in proline dehydrogenase activity or in both proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase activities of the bifunctional proline degradative enzyme. The latter type of mutants was unable to utilize l-ornithine, indicating that a single Δ1-pyrroline-5-carboxylate dehydrogenase activity is involved in the degradation of ornithine and proline. Proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase activities were strongly and coordinately induced by proline. It was excluded that Δ1-pyrroline-5-carboxylate acted as an inducer of the bifunctional enzyme and it was shown that the low level induction observed during growth on ornithine was due to the intracellular formation of proline. The formation of the proline degradative enzyme was shown to be subject to catabolite repression by citrate and nitrogen control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMS:

Ethylmethane sulfonate

NG:

N-methyl-N′-nitro-N′-nitrosoguanidine

P:

Minimal medium P

Pro-DH:

Proline dehydro-genase

P5C:

Δ1-Pyrroline-5-carboxylate

P5C-DH:

Δ1-Pyrroline-5-carboxylate dehydrogenase

References

  • Adelberg EA, Mandel M, Cheng GCC (1965) Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem Biophys Res Commun 18:788–795

    Google Scholar 

  • Arst HN, Jones SA, Bailey CR (1981) A method for the selection of deletion mutations in the l-proline catabolism gene cluster of Aspergillus nidulans. Genet Res 38:171–195

    Google Scholar 

  • Bachmann BJ, Low KB (1980) Linkage map of Escherichia coli K12, edition 6. Microbiol Rev 44:1–56

    Google Scholar 

  • Brandriss MC, Magasanik B (1980) Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol 143:1403–1410

    Google Scholar 

  • Clarke PH, Ornston LN (1975) Metabolic pathways and regulation I. In: PH Clarke, MH Richmond (eds) Genetics and biochemistry of Pseudomonas. Wiley, London, pp 191–261

    Google Scholar 

  • Day M, Potts JR, Clarke PH (1975) Location of genes for the utilization of acetamide, histidine and proline on the chromosome of Pseudomonas aeruginosa. Genet Res 25:71–78

    Google Scholar 

  • De Hauwer G, Lavalle R, Wiame JM (1964) Pyrroline dehydrogenase and catabolism regulation of arginine and proline in Bacillus subtilis. Biochim Biophys Acta 81:257–269

    Google Scholar 

  • Haas, D, Holloway BW (1978) Chromosome mobilization by the R plasmid R68.45: a tool in Pseudomonas genetics. Mol Gen Genet 158:229–237

    Google Scholar 

  • Haas D, Watson J, Krieg R, Leisinger T (1981) Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RP1 into the tryptophan synthase gene. Mol Gen Genet 182: 240–244

    Google Scholar 

  • Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581

    Google Scholar 

  • Janssen DB, Herst PM, Joosten HMLJ, van der Drift C (1981) Nitrogen control in Pseudomonas aeruginosa: a role for glutamine in the regulation of the synthesis of NADP-dependent glutamate dehydrogenase, urease and histidase. Arch Microbiol 128:398–402

    Google Scholar 

  • Krishna RV, Beilstein P, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Properties of γ-glutamyl-phosphate reductase and 1-pyrroline-5-carboxylate reductase. Biochem J 181:223–230

    Google Scholar 

  • Krishna RV, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Partial purification and characterization of γ-glutamyl kinase. Biochem J 181:215–222

    Google Scholar 

  • Leisinger T, Haas D, Hegarty MP (1972) Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta 262:214–219

    Google Scholar 

  • Lessie TG, Neidhardt FC (1976) Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa. J Bacteriol 93:1800–1810

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Meile L (1982) Prolinkatabolismus in Pseudomonas aeruginosa. Eigenschaften gereinigter Prolin-Dehydrogenase/1-Pyrrolin-5-Carboxylat-Dehydrogenase und Regulation ihrer Synthese. Dissertation Eidgenössische Technische Hochschule Zürich

    Google Scholar 

  • Menzel R, Roth J (1981a) Purification of the putA gene product. A bifunctional membrane-bound protein from Salmonella typhimurium responsible for the two-step oxidation of proline to glutamate. J Biol Chem 256:9755–9761

    Google Scholar 

  • Menzel R, Roth J (1981b) Enzymatic properties of the purified putA protein from Salmonella typhimurium. J Biol Chem 256:9762–9766

    Google Scholar 

  • Menzel R, Roth J (1981c) Regulation of the genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J Mol Biol 148:21–44

    Google Scholar 

  • Mercenier A, Simon J-P, Haas D, Stalon V (1980) Catabolism of l-arginine by Pseudomonas aeruginosa. J Gen Microbiol 116:381–389

    Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, Oxford

    Google Scholar 

  • Potts JR, Clarke PH (1976) The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa. J Gen Microbiol 93:377–387

    Google Scholar 

  • Prival MJ, Magasanik B (1971) Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes. J Biol Chem 246:6288–6296

    Google Scholar 

  • Royle P, Matsumoto H, Holloway BW (1981) Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 145:145–155

    Google Scholar 

  • Stanisich V, Holloway BW (1969) Conjugation in Pseudomonas aeruginosa. Genetics 61:327–339

    Google Scholar 

  • Stanisich V, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108

    Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Ann Rev Biochem 47:1127–1162

    Google Scholar 

  • Voellmy R, Leisinger T (1975) Dual role for N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol 122:799–809

    Google Scholar 

  • Voellmy R, Leisinger T (1976) Role of 4-aminobutyrate aminotrans-ferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol 128:722–729

    Google Scholar 

  • Watson JM, Holloway BW (1976) Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol 125:780–786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meile, L., Soldati, L. & Leisinger, T. Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch. Microbiol. 132, 189–193 (1982). https://doi.org/10.1007/BF00508729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00508729

Key words

Navigation