Skip to main content
Log in

Orinithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

L-Ornithine is the only diamino acid of the peptidoglycan of the gliding phototrophic Chloroflexus aurantiacus. The other constituents are L- and D-alanine, D-glutamic acid, N-acetyl-glucosamine and N-acetyl-muramic acid (in part as muramic acid-6-phosphate), all in approximate equimolar ratios to L-ornithine, aside from small amounts of glycine and histidine. Furthermore unlike typical Gram-negative bacteria, protein is not bound to this peptidoglycan. Instead, the rigid layer (sodium dodecyl sulfate insoluble cell wall fraction) contained large amounts of a complex polysaccharide consisting of sugar O-methyl ethers, hexoses and pentoses. Its binding site is presumably muramic acid-6-phosphate of the peptidoglycan.

In contrast, in Chlorobium vibrioforme f. thiosulfatophilium, meso-diaminopimelic acid was found as the only diamino acid of this peptidoglycan. As with other Gramnegative bacteria, L- and D-alanine, D-glutamic acid, N-acetyl-glucosamine and N-acetyl-muramic acid (no muramic acid-6-phosphate) were observed in approximate equimolar ratios to meso-diaminopimelic acid, except a lower D-alanine content. The rigid layer of Chlorobium vibrioforme f. thiosulfatophilum contained protein, and there were no indications for a complex polysaccharide comparable to that of Chloroflexus aurantiacus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ala:

alanine

A2pm:

diaminopimelic acid

GC/MS:

combined gas-liquid chromatography/mass spectrometry

GlcNAc:

N-acetyl-glucosamine

Glu:

glutamic acid

Gly:

glycine

HF:

hydrofluoric acid

Lys:

lysine

MurNAc:

N-acetyl-muramic acid

Orn:

ornithine

SDS:

sodium dodecyl sulfate

References

  • Araki Y, Nakatani T, Nakayama K, Ito E (1972) Occurrence of N-nonsubstituted glucosamine residues in peptidoglycan of lysozyme-resistant cell walls from Bacillus cereus. J Biol Chem 247:6312–6322

    Google Scholar 

  • Azuma I, Taniyama T, Yamamura Y, Yanagihara Y, Hattori Y, Yasuda S, Mifuchi I (1975) Chemical studies on the cell walls of Leptospira biflexa strain Urawa and Treponema pallidum strain Reiter. Japan J Microbiol 19:45–51

    Google Scholar 

  • Beyer P, Falk H, Kleinig H (1983) Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities. Arch Microbiol 134:60–63

    Google Scholar 

  • Braun V, Rehn K (1969) Chemical characterization, spatial distribution and function of lipoprotein of the Escherichia coli cell wall. Eur J Biochem 10:426–438

    Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    Google Scholar 

  • Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225

    Google Scholar 

  • Drews G, Weckesser J, Mayer H (1978) Cell envelopes. In: Clayton RK, Sistrom WR (eds). The photosynthetic bacteria. Plenum Press, New York, USA, pp 61–77

    Google Scholar 

  • Evers D, Weckesser J, Jürgens UJ (1986) Chemical analyses on cell envelope polymers of the halophilic, phototrophic Rhodospirillum salexigens. Arch Microbiol 145:254–258

    Google Scholar 

  • Feick R, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700

    Google Scholar 

  • Fox GE, Stackebrandt E, Hesbell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Google Scholar 

  • Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a non filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96–101

    Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6:152–156

    Google Scholar 

  • Hayashi K (1975) A rapid determination of sodium dedecyl sulfate with methyleneblue. Anal Biochem 67:503–506

    Google Scholar 

  • Hensel R, Demharter W, Kandler O, Kropenstedt RM, Stackebrandt E (1986) Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetical relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int J Syst Bacteriol 36:444–453

    Google Scholar 

  • Jürgens UJ, Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol 168:568–573

    Google Scholar 

  • Jürgens UJ, Drews G, Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol 154:471–478

    Google Scholar 

  • Knudson E, Jantzen E, Bryn K, Ormerod JG, Sirevag R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154

    Google Scholar 

  • König WA, Benecke I, Bretting H (1981) Gaschromatographische Trennung enantiomerer Kohlenhydrate an einer neuen chiralen stationären Phase. Angew Chem 93:688–690

    Google Scholar 

  • Lowry OH, Roberts NR, Leiner KY, Wu ML, Farr AL (1954) The quantitative histochemistry of brain. J Biol Chem 207:1–17

    Google Scholar 

  • Mayer H, Weckesser J (1984) ‘Unusual’ lipid A's: structures, taxonomical relevance and potential value for endotoxin research. In: Rietschel ETH (ed) Handbook of endotoxin, vol 1, Chemistry of endotoxin. Elsevier, Amsterdam, pp 221–247

    Google Scholar 

  • Merkel GJ, Stapleton, SS, Perry JJ (1978) Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria. J Gen Microbiol 109:141–148

    Google Scholar 

  • Ota T (1980) Purification and chemical analysis of peptidoglycan from Treponema pallidum strain Kazan. J Osaka Odontol Soc 43:589–602

    Google Scholar 

  • Pask-Hughes RA, Shaw N (1982) Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J Bacteriol 149:54–58

    Google Scholar 

  • Pask-Hughes RA, Williams RAD (1978) Cell envelope components of strains belonging to the genus Thermus. J Gen Microbiol 107:65–72

    Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Google Scholar 

  • Schleifer KH, Joseph R (1973) A directly cross-linked L-ornithine containing peptidoglycan in cell walls of Spirochaeta stenostrepta. FEBS Lett 36:83–86

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomical implications. Bacteriol Rev 36:407–477

    Google Scholar 

  • Schleifer KH, Kandler O (1983) Primary structures of murein and pseudomurein. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin. Gruyter, Berlin New York, pp 11–17

    Google Scholar 

  • Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Mikrobiol 119:269–277

    Google Scholar 

  • Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45

    Google Scholar 

  • Steinmetz MA, Fischer U (1982) Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch Microbiol 131:19–26

    Google Scholar 

  • Umemoto T, Ota T, Sagawa H, Kato K, Takada H, Tsujimoto M, Kawasaki A, Ogawa T, Harada K, Kotani S (1981) Chemical and biological properties of a peptidglycan isolated from Treponema pallidum Kazan. Infect Immun 31:767–774

    Google Scholar 

  • Vasstrand EN, Hofstad T, Endresen C, Jensen HB (1979) Demonstration of lanthionine as a natural constituent of the peptidoglycan of Fusobacterium nucleatum Fevl. Infect Immun 25:775–780

    Google Scholar 

  • Work E (1964) Amino acids of walls of Micrococcus radiodurans. Nature (Lond) 201:1107–1109

    Google Scholar 

  • Yanagihara Y, Kamisango K, Yasuda S, Kobayashi S, Mifuchi I, Azuma I, Yamamura Y, Johnson RC (1984) Chemical composition of cell walls and polysaccharide fractions of spirochetes. Microbiol Immunol 28:535–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgens, U.J., Meißner, J., Fischer, U. et al. Orinithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum . Arch. Microbiol. 148, 72–76 (1987). https://doi.org/10.1007/BF00429651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429651

Key words

Navigation