Skip to main content
Log in

Chromosomes of antelope squirrels (genus Ammospermophilus): A systematic banding analysis of four species with unusual constitutive heterochromatin

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The G- and C-banding patterns of mitotic chromosomes from four species of antelope squirrels (Ammospermophilus harrisi, interpres, leucurus and nelsoni) are discussed with special attention payed to the unusual quantities and position of constitutive heterochromatin. Heterochromatin appears to be responsible for the observation that cells from antelope squirrels contain over 70% more DNA than cells from another ground squirrel. A substantial fraction of this excess DNA consists of sequences that band as satellites in neutral CsCl or Cs2SO4-Ag+ density gradients. Interspecies similarities in the distribution of heterochromatin suggest that it has a function of some importance to these species and has therefore been conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnason, U.: Comparative chromosome studies in Pinnipedia. Hereditas (Lund) 76, 179–226 (1974a)

    Google Scholar 

  • Arnason, U.: Comparative chromosome studies in Cetacea. Hereditas (Lund) 77, 1–36 (1974b)

    Google Scholar 

  • Atkin, N.B., Mattinson, G., Beçak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma (Berl.) 17, 10–10 (1965)

    Google Scholar 

  • Bachmann, K.: Genome size in mammals. Chromosoma (Berl.) 37, 85–93 (1972)

    Google Scholar 

  • Duffy, P.A.: Chromosome variation in Peromyscus: a new mechanism. Science 176, 1333–1334

  • Golumb, H.M., Bahr, G.F.: Electron microscopy of human interphase nuclei. Determination of total dry mass and DNA-packing ratio. Chromosoma (Berl.) 46, 233–245 (1974)

    Google Scholar 

  • Gropp, A., Natarajan, A.T.: Karyotype and heterochromatin pattern of the Algerian hedgehog. Cytogenetics 11, 259–269 (1972)

    Google Scholar 

  • Hatch, F.T., Bodner, A.J., Mazrimas, J.A., Moore, D.H., II: Satellite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys). Chromosoma (Berl.) 58, 155–168 (1976)

    Google Scholar 

  • Hatch, F.T., Mazrimas, J.A.: Satellite DNAs in the kangaroo rat. Biochim. biophys. Acta (Amst.) 224, 291–294 (1970)

    Google Scholar 

  • Hatch, F.T., Mazrimas, J.A.: Fractionation and characterization of satellite DNAs of the kangaroo rat (Dipodomys ordii). Nucleic Acid Res. 1, 559–575 (1974)

    Google Scholar 

  • Hsu, T.C.: A possible function of constitutive heterochromatin: The bodyguard hypothesis. Genetics 79, 137–150 (1975)

    Google Scholar 

  • Ifft, J.B., Voet, D.H., Vinograd, J.: Determination of density distributions and density gradients in binary solutions at equilibrium in the ultacentrifuge. J. phys. Chem. 65, 1138–1145 (1961)

    Google Scholar 

  • Kay, E.R.M., Simmons, N.S., Dounce, A.L.: An improved preparation of sodium desoxyribonucleate. J. Amer. chem. Soc. 74, 1724–1726 (1952)

    Google Scholar 

  • Kulu, D.D.: Evolution and cytogenetics. In: Mammals of the sea (S.H. Ridgway, ed.), pp. 503–527. Springfield, Ill.: Thomas 1972

    Google Scholar 

  • Mascarello, J.T., Hsu, T.C.: Chromosome evolution in woodrats, genus Neotoma (Rodentia: Cricetidea). Evolution (Lawrence, Kans.) 30, 152–169 (1976)

    Google Scholar 

  • Mascarello, J.T., Stock, A.D., Pathak, S.: Conservation in the arrangement of genetic material in rodents. J. Mammal. 55, 831–834 (1974)

    Google Scholar 

  • Mascarello, J.T., Warner, J.W.: Chromosome variation in the plains woodrat: a pericentric inversion involving constitutive heterochromatin. Experientia (Basel) 30, 90–91 (1974)

    Google Scholar 

  • Mayall, B.H.: Deoxyribonucleic acid cytophotometry of stained human leukocytes. I. Differences among cell types. J. Histochem. Cytochem. 17, 249–257 (1969)

    Google Scholar 

  • Mayall, B.H., Mendelsohn, M.L.: Deoxyribonucleic acid cytophotometry of stained human leukocytes. II. The mechanical scanner of CYDAC, the theory of scanning photometry and the magnitude of residual errors. J. Histochem. Cytochem. 18, 383–407 (1970)

    Google Scholar 

  • Miklos, G.L.G., Nankivell, R.N.: Telomeric satellite DNA functions in regulating recombination. Chromosoma (Berl.) 56, 143–167 (1976)

    Google Scholar 

  • Pathak, S., Hsu, T.C., Arrighi, F.E.: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet. Cell Genet. 12, 315–326 (1973)

    Google Scholar 

  • Patton, J.L.: Chromosome studies of certain pocket mice, genus Perognathus (Rodentia: Heteromyidae). J. Mammal. 48, 27–37 (1967)

    Google Scholar 

  • Seabright, M.: A rapid banding technique for human chromosomes. Lancet 1971 II, 971–972

    Google Scholar 

  • Stefos, K., Arrighi, F.E.: Heterochromatic nature of W chromosome in birds. Exp. Cell Res. 68, 228–231 (1971)

    Google Scholar 

  • Wurster-Hill, D.H., Gray, C.W.: The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet. Cell Genet. 15, 306–331 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascarello, J.T., Mazrimas, J.A. Chromosomes of antelope squirrels (genus Ammospermophilus): A systematic banding analysis of four species with unusual constitutive heterochromatin. Chromosoma 64, 207–217 (1977). https://doi.org/10.1007/BF00328078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328078

Keywords

Navigation