Skip to main content
Log in

The settlement and metamorphosis of the marine bryozoan Bowerbankia gracilis (Ctenostomata: Vesicularioidea)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The settlement and metamorphosis of the marine bryozoan Bowerbankia gracilis has been examined by light and electron microscopy. The period of rapid morphogenesis consists of the following sequence of morphogenetic movements: 1) eversion of the internal sac, 2) retraction of the apical disc, 3) coronal involution and exposure of the pallial epithelium, and 4) closure of the internal coronal cavity. The eversion of the internal sac at the onset of metamorphosis coincides with a sudden reversal of the direction of beat of the coronal cilia. The reversed beating of the coronal cilia wafts the adhesive secreted by the internal sac over the metamorphosing larva, forming the pellicle. The internal sac is subsequently internalized and histolyzed with the corona and the other transitory larval tissues, and the extensive pallial epithelium forms the epidermis of the ancestrular body wall (cystid). Type I mesenchyme cells form an incomplete somatic mesothelium beneath the differentiating cystid epidermis, and Type II mesenchyme cells become mobile phagocytes. The main body cavity develops by the histolytic enlargement of the internal cavity formed during coronal involution. The apical disc degenerates and the polypide develops from rudiments in the oral hemisphere of the larva. The distinctive larval morphology and metamorphosis of vesicularioid ctenostomes are compared with other bryozoans, and possible evolutionary trends are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello E (1974) Control of ciliary activity in Metazoa. In: Sleigh MA (ed) Cilia and Flagella. Academic Press, New York pp. 353–376

    Google Scholar 

  • Atkins D (1955) The ciliary feeding mechanism of the cyphonautes larva (Polyzoa Ectoprocta). J mar biol Ass UK 34:451–466

    Google Scholar 

  • Atkins D (1960) The ciliary feeding mechanism of the Megathiridae (Brachiopoda) and the growth stages of the lophophore. J mar biol Ass UK 39:459–479

    Google Scholar 

  • Baba SJ (1974) Developmental changes in the pattern of ciliary response and the swimming behavior in some invertebrate larvae. In: Wu TY-T, Brokaw CJ, Brennan C (eds) Swimming and flying in nature. Vol. 1 Cal Inst Techn pp 317–324

  • Barrois J (1982) Embryogénie des Bryozoaires. Essai d'une théorie générale du developement basee sur l'étude de la métamorphose. J Anat Physiol (Paris) 18:124–157

    Google Scholar 

  • Barrois J (1886) Mémoire sur la métamorphose de quelques Bryozoaires. Biblitque Éc ht Étud (Paris) Sect Sci Nat 32(5):1–94; 4 pls

    Google Scholar 

  • Bogoiavlenskii H (1905) To the knowledge of embryonic development, budding, and regeneration in Zoobotryon pellucidus. Obshchestro liubitele estestvoznania, antropologii i etnografii, Moscow, izviestiia vol 108:1–90; pls I–III (Union List of Serials, vol 4, pp 3131

  • Braem F (1951) Über Victorella und einige ihrer nächsten Verwandten sowie die Bryozoenfauna des Ryck bei Greifswald. Zoologica (Stuttgart) 102:1–59; 12 pls

    Google Scholar 

  • Brien P (1970) Considérations phylogénétiques à propos des Lophophoriens Acad Roy Sci (Brussels) Classe Sci Bull ser 5, 56:565–579

    Google Scholar 

  • Browning JL, Nelson DL (1976) Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca++ fluxes across resting and excited membrane. Biochim Biophys Acta 448:338–351

    Google Scholar 

  • Browning JL, Nelson DL, Hansma HG (1976) Ca++ influx across the excitable membrane of behavioral mutants of Paramecium. Nature 259:491–494

    Google Scholar 

  • Burden-Jones C (1952) Development and biology of the larva of Saccoglossus horsti (Enteropneusta). Phil Trans Soc London B 236:553–590

    Google Scholar 

  • Calvet L (1900) Contribution à l'histoire naturelle des Bryozoaires Ectoproctes marins. Trav Inst Zool Univ Montpellier (N.S.) 8:1–488

    Google Scholar 

  • Carter GS (1926) On the nervous control of the velar cilia of the nudibranch veliger. J Exp Biol 4:1–26

    Google Scholar 

  • Chia FS, Burke RD (1978) Echinoderm metamorphosis: Fate of larval structures. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier/North-Holland Biomedical Press, New York pp 219–234

    Google Scholar 

  • Child CM (1933) The swimming plate rows of the ctenophore, Pleurobranchia, as gradients: with comparative data on other forms. J Comp Neurol 57:199–252

    Google Scholar 

  • Chuang SH (1968) The larvae of a Discinid (Inarticulata, Brachiopoda) Biol Bull 135:263–272

    Google Scholar 

  • Coonfield BR (1934) Co-ordination and movement of the swimming-plates of Mnemiopsis leidyi Agassiz Biol Bull 66:10–21

    Google Scholar 

  • Eckert R (1972) Bioelectric control of ciliary activity. Science 176:473–481

    Google Scholar 

  • Friedrich H (1933) Vergleichende Studien zur Bewegungs- und Nervenphysiologie bei Nemertinen. Zool Jahrb, Abt Allgem Zool Physiol Tiere 52:537–560

    Google Scholar 

  • Galt CP, Mackie GO (1971) Electrical correlates of ciliary reversal in Oikopleura. J Exp Biol 55:205–212

    Google Scholar 

  • Hondt JL d' (1973) Étude anatomique, histologique, et cytologique de la larva d'Alcyonidium polyoum (Hassal, 1841), Bryozoaire Cténostome. Arch Zool exp gén 114:537–602

    Google Scholar 

  • Hondt JL d' (1974) La métamorphose de la larve et la formation du “cystide” chez Alcyonidium polyoum (Hassal, 1841), Bryozoaire Cténostome. Arch Zool exp gén 115:577–605

    Google Scholar 

  • Hondt JL d' (1975) Étude anatomique et cytologique comparée de quelques larves de Bryozoaires Cténostomes. In: Pouyet S (ed) Bryozoa 1974. Docum Lab Geol Sci Lyon H.S. 3(1). Universite Claude Bernard, Lyon pp 125–134

    Google Scholar 

  • Hondt JL d' (1976) Evolution des lignées cellulaires larvaires des Bryozoaires Gymnolaemates au cours de la métamorphose et de l'organogenèse ancestrulaire. Bull Soc Zool Fr 101 (Supp 5):41–47

    Google Scholar 

  • Hondt JL d' (1977a) Structure larvaire et organogenèse post-larvaire chez Flustrellidra hispida (Fabricius, 1780), Bryozoaire Cténostome. Zoomorphology 87:165–189

    Google Scholar 

  • Hondt JL d' (1977b) Structure larvaire et histogenèse post-larvaire chez Bowerbankia imbricata (Adams, 1798), Bryozoaire Cténostome (Vesicularines). Arch Zool exp gén 118:211–243

    Google Scholar 

  • Ikeda I (1901) Observations on the development, structure, and metamorphosis of Actinotrocha. J Coll Sci Imp Univ Tokyo 13:508–592

    Google Scholar 

  • Jebram D (1969) Bryozoen als Holzschädlinge im Brackwasser. Kiel Meeresforsch 25:224–230

    Google Scholar 

  • Jebram D (1973) Stolonen-Entwicklung und Systematik bei den Bryozoa Ctenostomata. Z Zool Syst Evolutionforsch 11:1–48

    Google Scholar 

  • Jennings HS (1906) Behavior of lower organisms. Indiana Univ Press, Bloomington, Indiana

    Google Scholar 

  • Joliet L (1877) Contributions à l'histoire naturelle des bryozoaires des côtes de France. Arch Zool exp gén 6:193–304

    Google Scholar 

  • Kinosita H (1952) Response of a single cilium. I. Stimulating effect of isotonic KCl solution on a large abfrontal cilium of Mytilus. Annot Zool Japon 25:8–14

    Google Scholar 

  • Kinosita H, Murakami A (1967) Control of ciliary motion. Physiol Rev 47:53–82

    Google Scholar 

  • Kleinenberg N (1886) Die Entstehung des Annelids aus der Larve von Lopadorhynchus. Zeitschr wiss Zool 44:1–227

    Google Scholar 

  • Knight-Jones EW (1952) On the nervous system of Saccoglossus cambrensis (Enteropneusta). Phil Trans Roy Soc London B 236:315–354

    Google Scholar 

  • Kupelweiser H (1905) Untersuchungen über den feineren Bau und die Metamorphose des Cyphonautes. Zoologica (Stuttgart) 47:1–50

    Google Scholar 

  • Loeb MJ, Walker G (1977) Origin, composition, and function of secretions from pyriform organs and internal sacs of four settling Cheilo-ctenostome bryozoan larvae. Mar Biol 42:37–46

    Google Scholar 

  • Machemer H (1978) Motor activity and bioelectric control of cilia. Fortschr Zool 24:195–210

    Google Scholar 

  • Mackie GO, Spencer AN, Strathmann R (1969) Electrical activity associated with ciliary reversal in an echinoderm larva. Nature, London 223:1384–1385

    Google Scholar 

  • Mackie GO, Paul DH, Singla CM, Sleigh MA, Williams DE (1974) Branchial innervation and ciliary control in the ascidian Corella. Proc Roy Soc London B 187:1–35

    Google Scholar 

  • Mackie GO, Singla CL, Thiriot-Quievreux C (1976) Nervous control of ciliary activity in Gastropod larvae. Biol Bull 151:182–199

    Google Scholar 

  • Mawatari S, Mawatari SF (1975) Development and metamorphosis of the cyphonautes of Membranipora serrilamella Osburn. In: Pouyet S (ed) Bryozoan 1974. Docum Lab Geol Sci Lyon H.S. 3(1). Universite Claude Bernard, Lyon pp 13–18

    Google Scholar 

  • Naitoh Y (1966) Reversal response elicited in nonbeating cilia of Paramecium by membrane depolarization. Science 154:660–662

    Google Scholar 

  • Naitoh Y (1968) Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J Gen Physiol 51:85–103

    Google Scholar 

  • Naitoh Y, Kaneko H (1972) Reactivated triton-extracted models of Paramecium. Modification of ciliary movement by calcium ions. Science 176:523–524

    Google Scholar 

  • Naitoh Y, Eckert R (1974) The control of ciliary activity in Protozoa. In: Sleigh MA (ed) Cilia and Flagella. Academic Press, New York pp 305–352

    Google Scholar 

  • Nelson DL, Kung C (1978) Behavior of Paramecium: Chemical, physiological, and genetic studies. In: Hazelbauer GL (ed) Taxis and behavior. Elementary Sensory Systems in Biology; Receptors and Recognition Series B 5:75–100

  • Nielsen C (1981) On morphology and reproduction of ‘Hippodiplosiainsculpta and Fenestrulina malusii (Bryozoa, Cheilostomata). Ophelia 20:91–125

    Google Scholar 

  • Nott JA (1973) Settlement of the larvae of Spirorbis spirorbis L. J mar biol Ass UK 53:437–453

    Google Scholar 

  • Ostrooumoff MA (1885) Note sur la métamorphose de Cyphonautes. Zool Anz 8:219

    Google Scholar 

  • Ostroumoff AA (1886) Contribution a l'étude zoologique et morphologique des bryozoaires du Golfe de Sébastopol. Archs Slaves Biol 1:557–569; 2:184–190; 2:329–355; 5 pls

    Google Scholar 

  • Parker GH (1905) The reversal of ciliary movement in metazoans. Amer J Physiol 13:1–16

    Google Scholar 

  • Parker GH, Marks AP (1928) Ciliary reversal in the sea anemone Metridium. J Exp Zool 52:1–6

    Google Scholar 

  • Prouho H (1890) Recherches sur la larve de Flustrella hispida: Structure et métamorphose. Arch Zool exp gén 2 ser, 8:409–459

    Google Scholar 

  • Prouho H (1892) Contribution a l'histoire des bryozoaires. Arch Zool exp gén 2 ser, 10:557–656

    Google Scholar 

  • Reed CG (1978) Larval morphology and settlement of the bryozoan, Bowerbankia gracilis (Vesicularioidea, Ctenostomata): Structure and eversion of the internal sac. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier/North-Holland Biomedical Press, New York pp 41–48

    Google Scholar 

  • Reed CG (1980) The reproductive biology, larval morphology and metamorphosis of the marine bryozoan, Bowerbankia gracilis (Vesicularioidea, Ctenostomata). Ph.D. dissertation, Department of Zoology, University of Washington, Seattle, Washington 291 pp

    Google Scholar 

  • Reed CG (1981) The role of ciliary reversal in the settlement of the marine bryozoan, Bugula neritina. J Cell Biol 91:45a

    Google Scholar 

  • Reed CG, Cloney RA (1980) The role of ciliary motility in the metamorphosis of a bryozoan. Amer Zool 20:953

    Google Scholar 

  • Reed CG, Cloney RA (1982) The larval morphology of the marine bryozoan, Bowerbankia gracilis (Ctenostomata: Vesicularioidea). Zoomorphology 100:23–54

    Google Scholar 

  • Reed CG, Woollacott RM (1982) Mechanisms of rapid morphogenetic movements in the metamorphosis of the bryozoan Bugula neritina (Cheilostomata: Cellularioidea). I. Attachment to the substratum. J Morph 172:335–348

    Google Scholar 

  • Reisinger E (1924) Bei Gattung Rhynchoscolex. Z. Morphol Ökol Tiere 1:1–37

    Google Scholar 

  • Rice ME (1973) Morphology, behavior, and histogenesis of the pelagosphera larva of Phascolosoma agassizii (Sipuncula). Smithsonian Cont Zool No. 132:1–51

  • Ryland JS (1974) Behavior, settlement, and metamorphosis of bryozoan larvae: A review. Thalassia Jugoslavica 10:239–262

    Google Scholar 

  • Ryland JS (1976) Physiology and ecology of marine bryozoans. Adv mar biol 14:285–443

    Google Scholar 

  • Sterrer W (1972) Systematics and Evolution within the Gnathostomulida. Syst Zool 21:151–173

    Google Scholar 

  • Sterrer W, Reiger RM (1974) Retronectidae — a new cosmopolitan marine family of Catenulida (Turbellaria). In: Riser NW, Morse MP (eds) Biology of Turbellaria, McGraw-Hill, pp 63–92

    Google Scholar 

  • Strathmann RR (1971) The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension feeding. J exp mar Biol Ecol 6:109–160

    Google Scholar 

  • Strathmann RR (1973) Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoprocta). Mar Biol 23:129–136

    Google Scholar 

  • Strathmann RR (1975) Larval feeding in echinoderms. Amer Zool 15:717–730

    Google Scholar 

  • Strathmann RR, Bonar D (1976) Ciliary feeding of tornaria larvae of Ptychodera flava (Hemichordata: Enteropneusta). Mar Biol 34:317–324

    Google Scholar 

  • Strathmann RR, Jahn TL, Fonseca JRC (1972) Suspension feeding by marine invertebrate larvae: clearance of particles by ciliated bands of a rotifer, pluteus, and trochophore. Biol Bull 142:505–519

    Google Scholar 

  • Tamm S (1980) Cilia and ctenophores. Oceanus 23:50–59

    Google Scholar 

  • Tamm SL, Tamm S (1981) Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 89:495–509

    Google Scholar 

  • Twitty VC (1928) Experimental studies on the ciliary action of amphibian embryos. J Exp Zool 50:319–334

    Google Scholar 

  • Vigelius WJ (1886) Zur Ontogenie der marinen Bryozoen. Mitt Zool Stn Neapel 6:499–541

    Google Scholar 

  • Waller TR (1981) Functional morphology and development of veliger larvae of the european oyster, Ostrea edulis Linné. Smithsonian Cont Zool No. 328:1–70

  • Winston JE (1977) Distribution and ecology of estuarine ectoprocts: A critical review. Ches Sci 18:34–57

    Google Scholar 

  • Woollacott RM, Zimmer RL (1971) Attachment and metamorphosis of the Cheiloctenostome bryozoan, Bugula neritina (Linné). J Morph 134:351–382

    Google Scholar 

  • Woollacott RM, Zimmer RL (1978) Metamorphosis of cellularioid bryozoans. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier/North-Holland Biomedical Press, New York pp 49–63

    Google Scholar 

  • Yatsu N (1902) On the development of Lingula anatina. J Coll Sci Imp Univ Tokyo 17:1–112

    Google Scholar 

  • Zimmer RL (1964) Reproductive biology and development of Phoronida. Ph.D. dissertation, Department of Zoology, University of Washington, Seattle Washington 416 pp

    Google Scholar 

  • Zimmer RL (1973) Morphological and developmental affinities of the lophophorates. In: Larwood GP (ed) Living and fossil bryozoa. Proc Int Bryozool Assoc; Academic Press, New York pp 593–599

    Google Scholar 

  • Zimmer RL, Woollacott RL (1977a) Structure and classification of gymnolaemate larvae. In: Woollacott RM, Zimmer RL (eds) Biology of Bryozoans. Academic Press, New York pp 57–89

    Google Scholar 

  • Zimmer RL, Woollacott RM (1977b) Metamorphosis, ancestrulae, and coloniality in bryozoan life cycles. In: Woollacott RM, Zimmer RL (eds) Biology of Bryozoans. Academic Press, New York pp 91–142

    Google Scholar 

  • Zirpolo G (1933) Zoobothryon verticillatum (Delle Chiaje). Mem Accad Nuovi Lincei (2) 17:109–442

    Google Scholar 

  • Zschiesche A (1909) Untersuchungen über die Metamorphose von Alcyonidium mytili. Zool Jahrb, Abt Anat Ontog Tiere 28:1–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, C.G., Cloney, R.A. The settlement and metamorphosis of the marine bryozoan Bowerbankia gracilis (Ctenostomata: Vesicularioidea). Zoomorphology 101, 103–132 (1982). https://doi.org/10.1007/BF00312018

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312018

Keywords

Navigation