Skip to main content
Log in

The fate of somitocoele cells in avian embryos

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The early somite of avian embryos is made up of an epithelial wall and mesenchymal cells located within the somitocoele. We have studied the fate of somitocoele cells for a period of up to 6 days, using the quailchick marker technique. We also applied the QH-1 antibody, which specifically stains hemangiopoietic cells of quail origin, and studied the proliferative activity of epithelial somites with the BrdU anti-BrdU method. Our results show that somitocoele cells mainly give rise to the ribs and peripheral parts of the intervertébral discs. After 1 and 2 days of reincubation, the grafted somitocoele cells were located in the lateral part of the sclerotome, and only a few cells migrated axially towards the notochord. In frontal sections, the cells were located in a triangular area within the cranial part of the caudal sclerotome half. After 3 days of reincubation, some of the cells had migrated cranially along the myotome. After longer reincubation periods, cells grafted into one somite could be found in two adjacent ribs. The studies with the QH-1 antibody show that a subpopulation of somitocoele cells has angiogenic potency. Endothelial cells originating from the mesenchyme of the somitocoele migrated actively and even invaded the ipsilateral half of the neural tube. In the epithelial wall of the somite, BrdU-labelled nuclei were found basally, whereas more apically the nuclei were not stained, but mitotic figures were frequently present. The somitocoele cells also showed a high proliferative activity with about 26% of nuclei labelled with BrdU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagnall KM, Higgins SJ, Sanders EJ (1988) The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the chick-quail chimaera model. Development 103:69–85

    CAS  PubMed  Google Scholar 

  • Bagnall KM, Higgins SJ, Sanders EJ (1989) The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 107:931–943

    CAS  PubMed  Google Scholar 

  • Beresford B(1983) Brachial muscles in the chick embryo: the fate of individual somites. J Embryol Exp Morphol 77:99–116

    Google Scholar 

  • Blechschmidt E (1957) Die Entwicklungsbewegungen der Somiten und ihre Bedeutung für die Gliederung der Wirbelsäule. Z Anat Entwicklungsgesch 120:150–172

    Google Scholar 

  • Brand-Saberi B, Ebensperger C, Wilting J, Balling R, Christ B (1993) The ventralizing effect of the notochord on somite differentiation in chick embryos. Anat Embryol 188:239–245

    CAS  PubMed  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1972) Experimentelle Untersuchungen zur Somitenentstehung beim Hühnerembryo. Z Anat Entwicklungsgesch 138:82–97

    CAS  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150:171–186

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1978) On the formation of the myotomes in avian embryos. An experimental and scanning electron microscope study. Experientia 34:514–516

    Google Scholar 

  • Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventro-lateral trunk musculature in the avian embryo. An experimental and ultrastructural study. Anat Embryol 166:87–101

    Google Scholar 

  • Christ B, Brand-Saberi B, Jacob HJ, Jacob M, Seifert R (1990) Principles of early muscle development. In: Le Douarin NM, Dieterlen-Lièvre F, Smith J (eds). The avian model in developmental biology: from organism to genes. Editions du CNRS, Paris, pp 139–151

    Google Scholar 

  • Christ B, Grim M, Wilting J, Kirschhofer K von, Wachtier F (1991) Differentiation of endothelial cells in avian embryos does not depend on gastrulation. Acta Histochem 91:193–199

    Google Scholar 

  • Connolly DT, Heuvelman D, Nelson R, Olander JV, Eppler BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1470–1478

    CAS  PubMed  Google Scholar 

  • Dalgleish AE (1985) A study of the development of thoracic vertebrae in the mouse assisted by autoradiography. Acta Anat 122:91–98

    Google Scholar 

  • Deutsch U, Dressler GR, Grass P (1988) Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell 53:617–625

    CAS  PubMed  Google Scholar 

  • De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase. A receptor for vascular endothelial growth factor. Science 255:989–991

    Google Scholar 

  • Ebner E von (1888) Urwirbel und Neugliederung der Wirbelsäule. Sitzungsber Akad Wiss Wien III/97:194–206

    Google Scholar 

  • Eichmann A, Marcelle C, Bréant C, Le Douarin NM (1993) Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 42:33–48

    Article  CAS  PubMed  Google Scholar 

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typ der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler's Z Physiol Chem 135:203–252

    Google Scholar 

  • Goldstein RS, Kalcheim C (1992) Determination of epithelial half-somites in skeletal morphogenesis. Development 116:441–445

    CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Hamilton WJ, Boyd D, Mossman HW (1972) Human embryology. Heffer, Cambridge

    Google Scholar 

  • Keynes RJ, Stern CD (1984) Segmentation in the vertebrate nervous system. Nature 310:786–789

    CAS  PubMed  Google Scholar 

  • Lance-Jones C (1988) The somitic level of origin of embryonic chick hind limb muscles. Dev Biol 126:394–407

    Google Scholar 

  • Langman J, Nelson GR (1968) A radioautographic study of the development of the somite in the chick embryo. J Embryol Exp Morphol 19:217–226

    Google Scholar 

  • Le Douarin NM (1969) Particularités du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrationes cellulaires au cours de l'ontogenèse. Bull Biol Fr Belg 103:435–452

    Google Scholar 

  • Mestres P, Hinrichsen K (1976) Zur Histogenèse des Somiten beim Hühnchen J Embryol Exp Morphol 36:669–683

    PubMed  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Moller NPH, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Google Scholar 

  • Mitrani E, Shimoni Y (1990) Induction by soluble factors of organized axial structures in chick epiblast. Science 247:1092–1094

    Google Scholar 

  • Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Resp Dis 140:1097–1103

    Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Liévre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    Google Scholar 

  • Pasteels J (1936) Etudes sur la gastrulation des vertébrés méroblastique. III. Oiseaux. IV. Conclusions générales. Arch Biol (Liège) 48:381–488

    Google Scholar 

  • Rabl C (1888) Über die Differenzierung des Mesoderms. Verh Anat Ges 2:140–146

    Google Scholar 

  • Ranscht B, Bronner-Fraser M (1991) T-cadherin expression alternates with migrating neural crest cells in the trunk of avian embryos. Development 111:15–22

    Google Scholar 

  • Remak R (1855) Untersuchungen über die Entwicklung der Wirbelthiere. Reimer, Berlin

    Google Scholar 

  • Sanders EJ (1986) A comparison of the adhesiveness of somitic cells from chick and quail embryos. In: Bellairs R., Ede D., Lash J. (eds) Somites in developing embryos. Plenum Press, New York, pp 191–200

    Google Scholar 

  • Selleck MA, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development 112:615–626

    CAS  PubMed  Google Scholar 

  • Seno T (1961) An experimental study on the formation of the body wall in the chick. Acta Anat 45:60–82

    Google Scholar 

  • Solursh M, Drake C, Meier S (1987) The migration of myogenic cells from the somites at the wing level in avian embryos. Dev Biol 121:389–396

    Google Scholar 

  • Stern CD, Bellairs R (1984) Mitotic activity during somite segmentation in the early chick embryo. Anat Embryol 169:97–102

    Google Scholar 

  • Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187:1579–1586

    Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 90:1–122

    CAS  PubMed  Google Scholar 

  • Wachtler F, Christ B (1992) The basic embryology of skeleton muscle formation in vertebrates: the avian model. Semin Dev Biol 3:217–227

    Google Scholar 

  • Williams L (1910) The somites of the chick. Am J Anat 2:55–100

    Google Scholar 

  • Wilms P, Christ B, Wilting J, Wachtler F (1991) Distribution and migration of angiogenic cells from grafted avascular intraembryonic mesoderm. Anat Embryol 183:371–377

    Google Scholar 

  • Wilting J, Christ B, Bokeloh M, Weich HA (1993) In vivo effects of vascular endothelial growth factor on the chicken chorioallantoic membrane. Cell Tissue Res 274:163–172

    Google Scholar 

  • Wong GK, Bagnall KM, Berdan RC (1993) The immediate fate of cells in the epithelial somite of the chick embryo. Anat Embryol 188:441–447

    Google Scholar 

  • Yablonka-Reuveni Z (1989) The emergence of the endothelial cell lineage in the chick embryo can be detected by uptake of acetylated low density lipoprotein and the presence of a von Willebrand-like factor. Dev Biol 132:230–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants (Ch 44/9-2, Ch 44/12-1) from the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Zhi, Q., Wilting, J. et al. The fate of somitocoele cells in avian embryos. Anat Embryol 190, 243–250 (1994). https://doi.org/10.1007/BF00234302

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234302

Key words

Navigation