Skip to main content
Log in

Biological implications of the Viking mission to Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A central purpose of Viking was to search for evidence that life exists on Mars or may have existed in the past. The missions carried three biology experiments the prime purpose of which was to seek for existing microbial life. In addition the results of a number of the other experiments have biological implications: (1) The elemental analyses of the atmosphere and the regolith showed or implied that the elements generally considered essential to terrestrial biology are present. (2) But unexpectedly, no organic compounds were detected in Martian samples by an instrument that easily detected organic materials in the most barren of terrestrial soils. (3) Liquid water is believed to be an absolute requisite for life. Viking obtained direct evidence for the presence of water vapor and water ice, and it obtained strong inferential evidence for the existence of large amounts of subsurface permafrost now and in the Martain past. However it obtained no evidence for the current existence of liquid water possessing the high chemical potential required for at least terrestrial life, a result that is consistent with the known pressure-temperature relations on the planet's surface. On the other hand, the mission did obtain strong indications from both atmospheric analyses and orbital photographs that large quantities of liquid water flowed episodically on the Martian surface 0.5 to 2.5 G years ago.

The three biology experiments produced clear evidence of chemical reactivity in soil samples, but it is becoming increasingly clear that the chemical reactions were nonbiological in origin. The unexpected release of oxygen by soil moistened with water vapor in the Gas Exchange experiment together with the negative findings of the organic analysis experiment lead to the conclusion that the surface contains powerful oxidants. This conclusion is consistent with models of the atmosphere. The oxidants appear also to have been responsible for the decarboxylation of the organic nutrients that were introduced in the Label Release experiment. The major results of the GEX and LR experiments have been simulated at least qualitatively on Earth. The third, Pyrolytic Release, experiment obtained evidence for organic synthesis by soil samples. Although the mechanism of the synthesis is obscure, the thermal stability of the reaction makes a biological explanation most unlikely. Furthermore, the response of soil samples in all three experiments to the addition of water is not consistent with a biological interpretation.

The conditions now known to exist at and below the Martian surface are such that no known terrestrial organism could grow and function. Although the evidence does not absolutely rule out the existence of favourable oases, it renders their existence extremely unlikely. The limiting conditions for the functioning of terrestrial organisms are not the limits for conceivable life elsewhere, and accordingly one cannot exclude the possibility that indigenous life forms may currently exist somewhere on Mars or may have existed sometime in the past. Nevertheless, the available information about the present Martian environment puts severe constraints and presents formidable challenges to any putative Martian organisms. The Martian environment in the past, on the other hand, appears to have been considerably less hostile biologically, and it might possibly have permitted the origin and transient establishment of a biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anders, E. and Owen, T.: 1977, Science 198, 453.

    Google Scholar 

  • Anderson, D. M.: 1967, J. Coll. Interface Sci. 25, 174.

    Google Scholar 

  • Anderson, D. M. and Banin, A.: 1975, Origins of Life 6, 23.

    Google Scholar 

  • Averner, M. M. and MacElroy, R. D. (eds.): 1976, ‘On the Habitability of Mars’, NASA SP-414.

  • Baes, C. F. Jr., Goeller, H. E., Olson, J. S., and Rotty, R. M.: 1976, ‘The Global Carbon Dioxide Problem’, ORNL-5194, Oak Ridge National Laboratory.

  • Baes, C. F., Jr., Goeller, H. E., Olson, J. S., and Rotty, R. M.: 1977, Am. Sci. 65, 310.

    Google Scholar 

  • Baird, A. K., Toulmin, III, P., Clark, B. C., Rose, Jr., H. J., Keil, K., Christian, R. P., and Gooding, J. L.: 1976, Science 194, 1288.

    Google Scholar 

  • Bateman, J. B., Stevens, C. L., Mercer, W. B., and Carstensen, E. L.: 1962, J. Gen. Microbiol. 29, 207.

    Google Scholar 

  • Biemann, K., Owen, T., Rushneck, D. R., LaFleur, A. L., and Howarth, D. W.: 1976a, Science 194, 76.

    Google Scholar 

  • Biemann, K., Oro, J., Toulmin, III, P., Orgel, L. E., Nier, A. O., Anderson, D. M., Simmonds, P. G., Flory, D., Diaz, A. V., Rushneck, D. R., and Biller, J. A.: 1976b, Science 194, 72.

    Google Scholar 

  • Biemann, K., Oro, J., Toulmin, III, P., Orgel, L. E., Nier, A. O., Anderson, D. M. Simmonds, P. G., Flory, D., Diaz, A. V., Rushneck, D. R., Biller, J. E., and LaFleur, A. L.: 1977, J. Geophys. Res. 82, 4641.

    Google Scholar 

  • Bull, H. B.: 1964, An Introduction to Physical Biochemistry, F. A. Davis Co., Philadelphia, p. 146.

    Google Scholar 

  • Calvert, J. G. and Pitts, Jr., J. N.: 1966, Photochemistry, Wiley, New York, pp. 200–202.

    Google Scholar 

  • Cameron, R. E., King, J., and David, C. N.: 1970, Soil Sci. 109, 110.

    Google Scholar 

  • Carr, M. H. and Schaber, G. G.: 1977, J. Geophys. Res. 82, 4039.

    Google Scholar 

  • Clark, B. C., Baird, A. K., Rose, Jr., H. J., Toulmin, III, P., Keil, K., Castro, A. J., Kelliher, W. C., Rowe, C. D., and Evans, P. H.: 1976, Science 194, 1283.

    Google Scholar 

  • Deal, P. H., Souza, K. A., and Mack, H. M.: 1975, Origin of Life 6, 561.

    Google Scholar 

  • Donnellan, Jr., J. E. and Stafford, R. S.: 1968, Biophys. J. 8, 17.

    Google Scholar 

  • Dorsey, N. E.: 1940, ‘Properties of Ordinary Water Substance’, ACS Monograph Series, No. 81, Reinhold Publ. Corp.

  • Elsworthy, P. H.: 1961, J. Chem. Soc., Dec., (1061), pp. 5385–5389.

    Google Scholar 

  • Falk, M., Hartman, Jr., K. A., and Lord, R. C.: 1962, J. Am. Chem. Soc. 84, 3843.

    Google Scholar 

  • Farmer, C. B.: 1976, Icarus 28, 279.

    Google Scholar 

  • Farmer, C. B., Davies, D. W., and LaPorte, D. D.: 1976a, Science 193, 776.

    Google Scholar 

  • Farmer, C. B., Davies, D. W., and LaPorte, D.: 1976b, Science 194, 1339.

    Google Scholar 

  • Farmer, C. B., Davies, D. W., Holland, A. L., LaPorte, D. D., and Doms, P. E.: 1977, J. Geophys. Res. 82, 4225.

    Google Scholar 

  • Fennema, O. R., Powrie, W. D., and Marth, E. H.: 1973, Low-Temperature Preservation of Foods and Living Matter, M. Dekker, N.Y.

    Google Scholar 

  • Forslind, E. and Jacobsson, A.: 1975, in Felix Franks (ed.), ‘Water — A comprehensive Treatise’, Vol. 5, Water in Disperse Systems, Plenum Press, New York, p. 210.

    Google Scholar 

  • Goldblith, S. A., Proctor, B. E., Davison, S., Lang, D. A., Kan, B., Bates, C. J., and Kare, M.: 1953, Radiology 60, 732.

    Google Scholar 

  • Golubic, S.: in Trudinger et al. (eds.), Mineral Cycling, (in press).

  • Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., and Tillman, J. E.: 1977, J. Geophys. Res. 82, 4559.

    Google Scholar 

  • Horowitz, N. H.: 1977, Scientific Am. 237 (5), 52.

    Google Scholar 

  • Horowitz, N. H., Hubbard, J. S., and Hobby, G. L.: 1972, Icarus 16, 147.

    Google Scholar 

  • Horowitz, N. H., Hobby, G. L., and Hubbard, J. S.: 1976, Science 194, 1321.

    Google Scholar 

  • Horowitz, N. H., Hobby, G. L., and Hubbard, J. S.: 1977, J. Geophys. Res. 82, 4659.

    Google Scholar 

  • Hubbard, J. S., Hardy, J. P., and Horowitz, N. H.: 1971, Proc. Nat. Acad. Sci. U.S.A. 68, 574.

    Google Scholar 

  • Hubbard, H. S., Hardy, J. P., Voecks, G. E., and Golub, E. E.: 1973, J. Molec. Evolution 2, 149.

    Google Scholar 

  • Hunten, D. M.: 1974, Rev. Geophys. Space Phys. 12, 529.

    Google Scholar 

  • International Critical Tables: 1926, McGraw-Hill, N.Y.

  • Kieffer, H. H.: 1976, Science 194, 1344.

    Google Scholar 

  • Kieffer, H. H., Chase, Jr., S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D.: 1976, Science 194, 1341.

    Google Scholar 

  • Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., and Palluconi, F. D.: 1977, J. Geophys. Res. 82, 4249.

    Google Scholar 

  • Kirk, R. E. and Othmer, D. F.: 1969, in Encyclopedia of Chemical Technology, Wiley, N.Y., p. 819.

    Google Scholar 

  • Klein, H. P.: 1977, J. Geophys. Res. 82, 4677.

    Google Scholar 

  • Klein, H. P., Horowitz, N. H., Levin, G. V., Oyama, V. I., Lederberg, J., Rich, A., Hubbard, J. S., Hobby, G. L., Straat, P. A., Berdahl, B. J., Carle, G. C., Brown, F. S., and Johnson, R. D.: 1976, Science 194, 99.

    Google Scholar 

  • Knoll, A. H. and Barghoorn, E. S.: 1977, Science 198, 396.

    Google Scholar 

  • Leef, J. L. and Mazur, P.: 1978, App. Environm. Microbiol. 35, 72.

    Google Scholar 

  • Levin, G. V.: 1972, Icarus 16, 153.

    Google Scholar 

  • Levin, G. V. and Straat, P. A.: 1976, Science 194, 1322.

    Google Scholar 

  • Levin, G. V. and Straat, P. A.: 1977, J. Geophys. Res. 82, 4663.

    Google Scholar 

  • Lewis, G. N. and Randall, M.: 1961, Thermodynamics, revised by K. S. Pitzer and L. Brewer, McGraw-Hill, N.Y., pp. 406–409.

    Google Scholar 

  • Malin, M. C.: 1976, J. Geophys. Res. 81, 4825.

    Google Scholar 

  • Margulis, L., Halvorson, H. O., Lewis, J., and Cameron, A. G. W.: 1977, Icarus 30, 793.

    Google Scholar 

  • Margulis, L., and Lovelock, J. E.: 1974, Icarus 21, 471.

    Google Scholar 

  • Margulis, L. and Lovelock, J. E.: 1977, Pageoph 115 (in press).

  • Masursky, H., Boyce, J. M., Dial, A. L., Schaber, G. G., and Strobell, M. E.: 1977, J. Geophys. Res. 82, 4016.

    Google Scholar 

  • Mazur, P.: 1966, in H. T. Meryman (ed.), Cryobiology, London, Academic Press, pp. 213–315.

  • Mazur, P.: 1968, in G. C. Ainsworth and A. S. Sussman (eds.), The Fungi, Academic Press, N.Y., Vol. III, pp. 325–394.

  • McElroy, M. B., Yung, Y. L., and Nier, A. O.: 1976, Science 194, 70.

    Google Scholar 

  • McElroy, M. B., Kong, T. Y., and Yung, Y. L.: 1977, J. Geophys. Res. 82, 4379.

    Google Scholar 

  • Michener, H. D. and Elliott, R. P.: 1964, Adv. Food Res. 13, 349.

    Google Scholar 

  • Murphy, R. C., Preti, G., Nafissi-V, M. M., and Biemann, K.: 1970, Proceedings of the Apollo 11 Lunar Science Conference, Vol. 2, Pergamon Press, N.Y.

    Google Scholar 

  • Nier, A. O., McElroy, M. B., and Yung, Y. L.: 1976, Science 194, 68.

    Google Scholar 

  • Owen, T. and Biemann, K.: 1976, Science 193, 801.

    Google Scholar 

  • Owen, T., Biemann, K., Rushneck, D. R., Biller, J. E., Howarth, D. W., and LaFleur, A. L.: 1977, J. Geophys. Res. 82, 4635.

    Google Scholar 

  • Oyama, V. I.: 1972, Icarus 16, 167.

    Google Scholar 

  • Oyama, V. I., Berdahl, B. J., and Carle, G. C.: 1977, Nature 265, 110.

    Google Scholar 

  • Oyama, V. I. and Berdahl, B. J.: 1977, J. Geophys. Res. 82, 4669.

    Google Scholar 

  • Ponnamperuma, C., Shimoyama, A., Yamada, M., Hobo, T., and Pal, R.: 1977, Science 197, 455.

    Google Scholar 

  • Preti, G., Murphy, R. C., and Biemann, K.: 1971, Proceedings of the Second Lunar Science Conference, Vol. 2, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Rose, A. H.: 1976 in T. R. G. Gray and J. R. Posgate, (eds.), ‘The Survival of Vegetative Microbes’, Symp. 26, Soc. Gen. Microbiol, Cambridge Univ. Press, pp. 155–182.

  • Sagan, C. and Pollack, J. B.: 1974, Icarus 21, 490.

    Google Scholar 

  • Shorthill, R. W., Moore, II, H. J., Hutton, R. E., Scott, R. F., and Spitzer, C. R.: 1976, Science 194, 1309.

    Google Scholar 

  • Silverman, G. J. and Sinskey, T. J.: 1968, in C. A. Lawrence and S. S. Block (eds.), Disinfection, Sterilization, and Preservation, Lea & Febiger, Philadelphia, Pa., pp. 741–760.

  • Toulmin, III, P., Clark, B. C., Baird, A. K., Keil, K., and Rose, Jr., H. J.: 1976, Science 194, 81.

    Google Scholar 

  • Toulmin, III, P., Baird, A. K., Clark, B. C., Keil, K., Rose Jr., H. J., Christian, R. P., Evans, P. H., and Kelliher, W. C.: 1977, J. Geophys. Res. 82, 4625.

    Google Scholar 

  • Tseng, S. S. and Chang, S.: 1975, Origins of Life 6, 61.

    Google Scholar 

  • Vol'nov, I. I.: 1966, Peroxides, Superoxides, and Ozonides of Alkali and Alkaline Earth Metals, Plenum Press, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur, P., Barghoorn, E.S., Halvorson, H.O. et al. Biological implications of the Viking mission to Mars. Space Sci Rev 22, 3–34 (1978). https://doi.org/10.1007/BF00215812

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215812

Keywords

Navigation