Skip to main content
Log in

Polyploid spore formation in diploid orchid species

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Extensive cytological studies into all stages of pollinial development in 10 diploid species of orchids belonging to the Arethuseae tribe revealed four possible mechanisms operating premeiotically and meiotically, resulting in the formation of polyploid spores in the form of monads, dyads and triads. The mechanisms involved are: (1) premeiotic disturbances resulting in tetraploid pollen mother cells; (2) faulty anaphase disjunction giving rise to restitution nuclei at both meiotic divisions; (3) failure to participate in meiosis I or meiosis II; and (4) co-orientation of the two spindles during metaphase II. Why fertile diploid species should possess elaborate pathways for the formation of such spores cannot be explained satisfactorily in view of the low frequencies of such spores formed and the absence of a euploid series in the four genera investigated. Nevertheless, these orchid genera, with high basic numbers, could be highly evolved polyploids and the regular formation of such spores could be viewed as a relic of their evolutionary past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arends J. C., 1970. Cytological observations on genome homology in eight interspecific hybrids of Phalaenopsis. Genetica 41: 88–100.

    Google Scholar 

  • Bradley M. V., 1948. A method for making aceto-carmine squashes permanent without removal of the cover-slip. Stain Technol. 23: 41–44.

    Google Scholar 

  • Brandham P. E., 1982. Inter-embryo competition in the progeny of autotriploid Aloineae (Liliaceae). Genetica 59: 29–42.

    Google Scholar 

  • Hagerup O., 1938. Studies on the significance of polyploidy. II. Orchis. Hereditas 24: 258–264.

    Google Scholar 

  • Hagerup O., 1947. The spontaenous formation of haploid, polyploid and aneuploid embryos in some orchids. K. danske Vidensk. Selsk. Biol. Meddr. 20: 1–22.

    Google Scholar 

  • Harmsen L., 1943. Studies on the cytology of arctic plants. II. Habenaria. Meddr. Grønland. 131: 1–15.

    Google Scholar 

  • Häglund M., 1970. Meiosis in Solanum phureja. Hereditas 66: 183–188.

    Google Scholar 

  • Holttum R. E., 1964. Flora of Malaya. Vol. 1. Orchids. 3rd Ed. Government Printing Office, Singapore.

    Google Scholar 

  • Humphrey L. M., 1934. The somatic chromosomes of Cypripedium hirsutum and six species of the genus Habenaria. Am. Nat. 68: 184–186.

    Google Scholar 

  • Jones K. & Daker M. G., 1968. The chromosomes of orchids, III. Catasetinae Schltr. Kew Bull. 22: 421–427.

    Google Scholar 

  • Kamemoto H., 1950. Polyploidy in Cattleya. Am. Orchid Soc. Bull. 19: 366–373.

    Google Scholar 

  • Kamemoto H., 1958. Polyploidy in Vanda. Proc. Second World Orchid Conf., Harvard Univ. Press, Cambridge, Mass. pp. 51–55.

    Google Scholar 

  • Kamemoto H., Meeyot W. & Takeshita M., 1972. Breeding behaviour of polyploid Dendrobium orchids. J. Am. Soc. Hort. Sci. 97: 3–5.

    Google Scholar 

  • Kamemoto H., Sagarik R. & Kasemsap S., 1964b. Chromosome numbers of Sarcanthine orchid species of Thailand. Nat. Hist. Bull. Siam Soc. 20: 235–241.

    Google Scholar 

  • Kamemoto H. & Shindo K., 1962. Genome relationships in interspecific and intergeneric hybrids of Renanthera. Am. J. Bot. 49: 737–748.

    Google Scholar 

  • Kamemoto H., Shindo K. & Kosaki K., 1964a. Chromosome homology in the Ceratobium, Phalaenanthe, and Latourea Sections of the genus Dendrobium. Pacif. Sc. 18: 104–115.

    Google Scholar 

  • Kamemoto H. & Tara M., 1969. The relationship of Renanthera storiei and Trichoglottis fasciata. Brittonia 21: 126–129.

    Google Scholar 

  • Kliphuis E., 1963. Cytological observations in relation to the taxonomy of the orchids of the Netherlands. Acta bot. neerl. 12: 172–194.

    Google Scholar 

  • Lam S. L., 1974. Origin and formation of unreduced gametes in the potato. J. Hered. 65: 175–178.

    Google Scholar 

  • Levan A., 1941. Syncyte formation in the pollen mother cells of haploid Phleum pratense. Hereditas 27: 243–252.

    Google Scholar 

  • Matsuura H., 1935. A cytological study of Phacellanthus tubiflorus Siels. et Zucc. I. J. Fac. Sci. Hokkaido Imp. Univ. 3: 169–187.

    Google Scholar 

  • Mehlquist G. A. L., 1947. Polyploidy in the genus Paphopedilum Pfitz. (Cypripedium Hort.) and its practical implications. Miss. bot. Gard. Bull. 35: 211–228.

    Google Scholar 

  • Miduno T., 1940. Chromosomenstudien an Orchidazeen. III. Über das Vorkommen von haploiden Pflanzen bei Bletilla striata. Reichb. f. var. gebina Reichb. f. Cytologia 11: 156–177.

    Google Scholar 

  • Rhoades M. M. & Dempsey E., 1966. Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54: 505–522.

    Google Scholar 

  • Satina S. & Blakeslee A. F., 1935. Cytological effects of a gene in Datura which causes dyad formation in sporogenesis. Bot. Gaz. 96: 521–532.

    Google Scholar 

  • Snow R., 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations Stain Technol. 38: 9–13.

    Google Scholar 

  • Stern H., 1946. The formation of polynucleated pollen mother cells. J. Hered. 37: 47–50.

    Google Scholar 

  • Storey W. B., 1952. Chromosome numbers in some Vanda species and hybrids. Am. Orchid Soc. Bull. 21: 801–806.

    Google Scholar 

  • Storey W. B., 1956. Diploid and polyploid gamete formation in orchids. Am. Soc. hort. Sci. 68: 491–502.

    Google Scholar 

  • Storey W. B., Kamemoto H. & Shindo K., 1963. Chromosomes of Vanda spathulata and its hybrids. Am. Orchid Soc. Bull. 32: 703–709.

    Google Scholar 

  • Tanaka R., 1965. Intraspecific polyploidy in Goodyera maximowicziana Makino. Kromosomo 60: 1945–1950.

    Google Scholar 

  • Tanaka R. & Kamemoto H., 1960. Meiotic chromosome behaviour in diploid and polyploid Vanda orchid hybrids. Cytologia 25: 405–418.

    Google Scholar 

  • Tanaka R. & Kamemoto H., 1961. Meiotic chromosome behaviour in some intergeneric hybrids of the Vanda alliance. Am. J. Bot. 48: 573–582.

    Google Scholar 

  • Tanaka R., Karasawa K. & Ishida G., 1981. Karyomorphological observations on Calanthe of Japan. Bull. Hiroshima bot. Gard. 4: 9–62.

    Google Scholar 

  • Teoh S. B., 1980. Cytological studies in Malayan members of the Phaius tribe (Orchidaceae). II. Meiotic and B-chromosomes. Caryologia 33: 483–493.

    Google Scholar 

  • Teoh S. B., 1982. ‘Complement Fractionation’ in natural diploid orchid species. Theor. appl. Genet. 61: 91–95.

    Google Scholar 

  • Teoh S. B. & Lim S. N., 1978. Cytological studies in Malayan members of the Phaius tribe (Orchidaceae). I. Somatic chromosomes. Malaysian J.Sci. 5(A): 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teoh, S.B. Polyploid spore formation in diploid orchid species. Genetica 63, 53–59 (1984). https://doi.org/10.1007/BF00137465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00137465

Keywords

Navigation