Skip to main content
Log in

Class IV charge models: A new semiempirical approach in quantum chemistry

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We propose a new criterion for defining partial charges on atoms in molecules, namely that physical observables calculated from those partial charges should be as accurate as possible. We also propose a method to obtain such charges based on a mapping from approximate electronic wave functions. The method is illustrated by parameterizing two new charge models called AM1-CM1A and PM3-CM1P, based on experimental dipole moments and, respectively, on AM1 and PM3 semiempirical electronic wave functions. These charge models yield rms errors of 0.30 and 0.26 D, respectively, in the dipole moments of a set of 195 neutral molecules consisting of 103 molecules containing H, C, N and O, covering variations of multiple common organic functional groups, 68 fluorides, chlorides, bromides and iodides, 15 compounds containing H, C, Si or S, and 9 compounds containing C-S-O or C-N-O linkages. In addition, partial charges computed with this method agree extremely well with high-level ab initio calculations for both neutral compounds and ions. The CM1 charge models provide a more accurate point charge representation of the dipole moment than provided by most previously available partial charges, and they are far less expensive to compute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Straatsma, T.P. and McCammon, J.A., Annu. Rev. Phys. Chem., 43 (1992) 407.

    Google Scholar 

  2. For recent comparisons of different methods of charge analysis see: Bachrach, S.M., In Lipkowitz, K.B. and Bovd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 5, VCH Publishers, New York, NY, 1993, pp. 171–227.

    Google Scholar 

  3. Wiberg, K.B. and Rablen, P.R., J. Comput. Chem., 14 (1993) 1504.

    Google Scholar 

  4. Coppens, P., Annu. Rev. Phys. Chem., 43 (1992) 663.

    Google Scholar 

  5. Mulliken, R.S., J. Chem. Phys., 3 (1935) 564.

    Google Scholar 

  6. Mulliken, R.S., J. Chem. Phys., 23 (1955) 1833.

    Google Scholar 

  7. Mulliken, R.S., J. Chem. Phys., 36 (1962) 3428.

    Google Scholar 

  8. Bader, R.W.F., Acc. Chem. Res., 18 (1985) 9.

    Google Scholar 

  9. Bader, R.W.F., Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.

    Google Scholar 

  10. Warshel, A., Acc. Chem. Res., 14 (1981) 284.

    Google Scholar 

  11. Price, S.L. and Stone, A.J., J. Chem. Phys., 86 (1987) 2859.

    Google Scholar 

  12. Shi, X. and Bartell, L.S., J. Am. Chem. Soc., 92 (1988) 5667.

    Google Scholar 

  13. Hall, D. and Williams, D.E., Acta Crystallogr., A31 (1975) 56.

    Google Scholar 

  14. Momany, F.A., J. Phys. Chem., 82 (1978) 592.

    Google Scholar 

  15. Kollman, P.A., J. Am. Chem. Soc., 99 (1977) 4875.

    Google Scholar 

  16. Kollman, P.A., J. Am. Chem. Soc., 100 (1978) 2974.

    Google Scholar 

  17. Smit, P.H., Derissen, J.L. and Van Duijneveldt, F.B., Mol. Phys., 37 (1979) 521.

    Google Scholar 

  18. Cox, S.R. and Williams, D.E., J. Comput. Chem., 2 (1981) 304.

    Google Scholar 

  19. Williams, D.E. and Yan, M.J., Adv. Atomic Mol. Phys., 23 (1988) 87.

    Google Scholar 

  20. Williams, D.E., J. Comput. Chem., 9 (1988) 745.

    Google Scholar 

  21. Williams, D.E., Biopolymers, 29 (1990) 1367.

    Google Scholar 

  22. Williams, D.E., In Lipkowitz, K.B. and Bovd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 2, VCH Publishers, New York, NY, 1991, pp. 219–271.

    Google Scholar 

  23. Chirlian, L.E. and Francl, M.M., J. Comput. Chem., 8 (1987) 894.

    Google Scholar 

  24. Breneman, C.M. and Wiberg, K.B., J. Comput. Chem., 11 (1990) 361.

    Google Scholar 

  25. Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.

    Google Scholar 

  26. Besler, B.H., Merz Jr., K.M. and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.

    Google Scholar 

  27. Merz, K.M., J. Comput. Chem., 11 (1992) 749.

    Google Scholar 

  28. Reed, A.E., Weinstock, R.B. and Weinhold, F., J. Chem. Phys., 83 (1985) 735.

    Google Scholar 

  29. Reed, A.E., Weinhold, F. and Curtiss, L.A., Chem. Rev., 88 (1988) 899.

    Google Scholar 

  30. Montagnini, R. and Tomasi, J., J. Mol. Struct. (THEOCHEM), 279 (1993) 131.

    Google Scholar 

  31. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  32. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  33. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 221.

    Google Scholar 

  34. Møller, C. and Plesset, M.S., Phys. Rev., 46 (1934) 618.

    Google Scholar 

  35. Pople, J.A., Seeger, R. and Krishnan, R., Int. J. Quantum Chem. Symp., 11 (1977) 49.

    Google Scholar 

  36. Krishnan, R. and Pople, J.A., Int. J. Quantum Chem., 14 (1978) 91.

    Google Scholar 

  37. Krishnan, R., J. Chem. Phys., 72 (1980) 4244.

    Google Scholar 

  38. Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A., Ab Initio Molecular Orbital Theory, Wiley, New York, NY, 1986.

    Google Scholar 

  39. Hehre, W.J., Ditchfield, R. and Pople, J.A., J. Chem. Phys., 56 (1972) 2257.

    Google Scholar 

  40. Dunning Jr., T.H., J. Chem. Phys., 90 (1989) 1007.

    Google Scholar 

  41. Woon, D.E. and Dunning Jr., T.H., J. Chem. Phys., 98 (1993) 1358.

    Google Scholar 

  42. X/Y denotes electronic structure level X with basis set Y. HF denotes Hartree-Fock, MP2 denotes second-order Møller-Plesset perturbation theory (Ref. 21a), and cc-pVDZ (Ref. 23) denotes a basis set.

  43. X/Y//Z/W denotes that the wave function and energy are calculated by method X with basis set Y at a geometry optimized by method Z with basis set W. X/Y denotes X/Y//X/Y.

  44. Pople, J.A. and Segal, G.A., J. Chem. Phys., 43 (1965) S129.

    Google Scholar 

  45. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99 (1977) 4899.

    Google Scholar 

  46. Armstrong, D.R., Perkins, P.G. and Stewart, J.J.P., J. Chem. Soc., Dalton Trans., (1973) 838.

  47. Stark, B., In Hellwege, K.-H. and Hellwege, A.M. (Eds.) Molecular Constants from Microwave Spectroscopy, Landolt-Börnstein, New Series, Group II, Vol. 4, Springer-Verlag, Berlin, 1967, pp. 136–151.

    Google Scholar 

  48. Demaison, J., Hütner, W., Stark, B., Buck, I., Tischer, R. and Winnewisser, M., In Hellwege, K.-H. (Ed.) Molecular Constants, Landolt-Börnstein, New Series, Group II, Vol. 6, Springer-Verlag, Berlin, 1974, pp. 261–304.

    Google Scholar 

  49. Demaison, J., Hütner, W. and Tiemann, E., In Hellwege, K.-H. and Hellwege, A.M. (Eds.) Molecular Constants, Landolt-Börnstein, New Series, Group II, Vol. 14a, Springer-Verlag, Berlin, 1982, pp. 584–643.

    Google Scholar 

  50. Nelson, R.D., Lide, D.R. and Maryott, A.A., Natl. Stand., Ref. Data Ser., United States National Bureau of Standards, NSRDS-NBS 10, 1967.

  51. Hocking, W.H., Z. Naturforsch., 31A (1976) 1113.

    Google Scholar 

  52. Caminati, W., J. Mol. Spectrosc., 86 (1981) 193.

    Google Scholar 

  53. Caminati, W. and Corbelli, G., J. Mol. Spectrosc., 90 (1981) 572.

    Google Scholar 

  54. Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Repolgle, E.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binkley, J.S., Stewart, J.J.P. and Pople, J.A., GAUSSIAN92, Gaussian, Inc., Pittsburgh, PA, 1992.

    Google Scholar 

  55. Cramer, C.J., Lynch, G.C., Hawkins, G.D. and Truhlar, D.G., QCPE Bull., 13 (1993) 78. This new code will be made available as AMSOL, version 4.5.

    Google Scholar 

  56. Marquardt, D.W., J. Soc. Indian Appl. Math., 11 (1963) 431.

    Google Scholar 

  57. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  58. Jorgensen, W.L., Chandresekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  59. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  60. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  61. Jorgensen, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 110 (1988) 1657.

    Google Scholar 

  62. Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Design, 6 (1992) 629.

    Google Scholar 

  63. Cramer, C.J. and Truhlar, D.G., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 6, VCH Publishers, New York, NY, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storer, J.W., Giesen, D.J., Cramer, C.J. et al. Class IV charge models: A new semiempirical approach in quantum chemistry. J Computer-Aided Mol Des 9, 87–110 (1995). https://doi.org/10.1007/BF00117280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117280

Keywords

Navigation