Skip to main content
Log in

Asymptotically efficient autoregressive model selection for multistep prediction

  • Model Selection
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A direct method for multistep prediction of a stationary time series involves fitting, by linear regression, a different autoregression for each lead time, h, and to select the order to be fitted, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaaiaacaqabeaadaqaaqGaaO% qaaiqadUgagaacamaaBaaaleaacaWGObaabeaaaaa!3E44!\[\tilde k_h\], from the data. By contrast, a more usual ‘plug-in’ method involves the least-squares fitting of an initial k-th order autoregression, with k itself selected by an order selection criterion. A bound for the mean squared error of prediction of the direct method is derived and employed for defining an asymptotically efficient order selection for h-step prediction, h > 1; the S h(k) criterion of Shibata (1980) is asymptotically efficient according to this definition. A bound for the mean squared error of prediction of the plug-in method is also derived and used for a comparison of these two alternative methods of multistep prediction. Examples illustrating the results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akaike H. (1970). Statistical predictor identification, Ann. Inst. Statist. Math., 22, 203–217.

    Google Scholar 

  • Akaike H. (1973). Information theory and an extension of the maximum likelihood principle, 2nd International Symposium on Information Theory (eds. B. N. Petrov and F. Csaki), 278–291, Akademia Kiado, Budapest.

    Google Scholar 

  • Anderson T. W. (1971). The Statistical Analysis of Time Series, Wiley, New York.

    Google Scholar 

  • Baxter G. (1963). A norm inequality for a “finite-section” Wiener-Hopf equation, Illinois J. Math., 7, 97–103.

    Google Scholar 

  • Bhansali R. J. (1981). Effects of not knowing the order of an autoregressive process on the mean squared error of prediction—I, J. Amer. Statist. Assoc., 76, 588–597.

    Google Scholar 

  • Bhansali R. J. (1986). Asymptotically efficient selection of the order by the criterion autoregressive transfer function, Ann. Statist., 14, 315–325.

    Google Scholar 

  • Bhansali R. J. (1993). Estimation of the prediction error variance and an R 2measure by autoregressive model fitting, J. Time Ser. Anal., 14, 125–146.

    Google Scholar 

  • Bhansali R. J. and Downham D. Y. (1977). Some properties of the order of an autoregressive model selected by a generalization of Akaike's FPE criterion, Biometrika, 64, 547–551.

    Google Scholar 

  • Bhansali R. J. and Papangelou F. (1991). Convergence of moments of least-squares estimators for the coefficients of an autoregressive process of unknown order, Ann. Statist., 19, 1155–1162.

    Google Scholar 

  • Box G. E. P. and Jenkins G. M. (1970). Time Series Analysis: Forecasting and Control, Holden Day, San Francisco.

    Google Scholar 

  • Brillinger D. R. (1975). Time Series: Data Analysis and Theory, Holt, New York.

    Google Scholar 

  • Cox D. R. (1961). Prediction by exponentially weighted moving averages and related methods, J. Roy. Statist. Soc. Ser. B, 23, 414–422.

    Google Scholar 

  • del Pino G. E. and Marshall P (1986). Modelling errors in time series and k-step prediction, Recent Advances in Systems Modelling (ed. L. Contesse), 87–98, Springer, Berlin.

    Google Scholar 

  • Findley D. F. (1983). On the use of multiple models for multi-period forecasting, Proceedings of the Business and Economic Statistics Section, 528–531, American Statistical Association, Washington, D.C.

    Google Scholar 

  • Gersch W. and Kitagawa G. (1983). The prediction of a time series with trends and seasonalities, Journal of Business and Economic Statistics, 1, 253–264.

    Google Scholar 

  • Greco C., Menga G., Mosca E. and Zappa G. (1984). Performance improvements of self-tuning controllers by multistep horizons: the MUSMAR approach, Automatica, 20, 681–699.

    Google Scholar 

  • Grenander U. and Rosenblatt M. (1954). An extension of a theorem of G. Szego and its application to the study of stochastic processes, Trans. Amer. Math. Soc., 76, 112–126.

    Google Scholar 

  • Hurvich C. M. (1987). Automatic selection of a linear predictor through frequency domain cross validation, Comm. Statist. Theory Methods, 16, 3199–3234.

    Google Scholar 

  • Kabaila P. V. (1981). Estimation based on one step ahead prediction versus estimation based on multi-step ahead prediction, Stochastics, 6, 43–55.

    Google Scholar 

  • Lewis R. and Reinsel G. C. (1985). Prediction of multivariate time series by autoregressive model fitting, J. Multivariate Anal., 16, 393–411.

    Google Scholar 

  • Lin J.-L. and Granger C. W. J. (1994). Forecasting from non-linear models in practice, Journal of Forecasting, 13, 1–9.

    Google Scholar 

  • Milanese M. and Tempo R. (1985). Optimal algorithms theory for robust estimation and prediction, IEEE Trans. Automat. Control, AC-30, 730–738.

    Google Scholar 

  • Pillai S. U., Shim T. I. and Benteftifa M. (1992). A new spectrum extension method that maximizes the multistep minimum prediction error-generalization of the maximum entropy concept, IEEE Transactions on Signal Processing, 40, 142–158.

    Google Scholar 

  • Priestley M. B. (1981). Spectral Analysis and Time Series Academic Press, New York.

    Google Scholar 

  • Ray B. K. (1993). Modeling long-memory processes for optimal long-range prediction, J. Time Ser. Anal., 14, 511–526.

    Google Scholar 

  • Shibata R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a linear process, Ann. Statist., 8, 147–164.

    Google Scholar 

  • Shibata R. (1981). An optimal autoregressive spectral estimate, Ann. Statist., 9, 300–306.

    Google Scholar 

  • Stoica P. and Nehorai A. (1989). On multistep prediction error methods for time series models, Journal of Forecasting, 8, 357–368.

    Google Scholar 

  • Stoica P. and Soderstrom T. (1984). Uniqueness of estimated k-step prediction models of ARMA processes, Systems Control Lett., 4, 325–331.

    Google Scholar 

  • Tiao G. C. and Xu D. (1993). Robustness of MLE for multi-step predictions: the exponential smoothing case, Biometrika, 80, 623–641.

    Google Scholar 

  • Wall K. D. and Correia C. (1989). A preference-based method for forecasting combination, Journal of Forecasting, 8, 269–292.

    Google Scholar 

  • Wei W. W. S. (1990). Time Series Analysis, Addison Wesley, Redwood City.

    Google Scholar 

  • Weiss A. A. (1991). Multi-step estimation and forecasting in dynamic models, J. Econometrics, 48, 135–149.

    Google Scholar 

  • Whittle P. (1963). Prediction and Regulation by Linear Least-Square Methods, English University Press, London.

    Google Scholar 

  • Yamamoto T. (1976). Asymptotic mean square prediction error for an autoregressive model with estimated coefficients, Applied Statistics, 25, 123–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bhansali, R.J. Asymptotically efficient autoregressive model selection for multistep prediction. Ann Inst Stat Math 48, 577–602 (1996). https://doi.org/10.1007/BF00050857

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050857

Key words and phrases

Navigation