Skip to main content
Log in

Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The barley BARE-1 is a transcribed, copia-like retroelement with well-conserved functional domains, an active promoter, and a copy number of at least 3 × 104. We examined its chromosomal localization by in situ hybridization. The long terminal repeat (LTR) probe displayed a uniform hybridization pattern over the whole of all chromosomes, excepting paracentromeric regions, telomeres, and nucleolar organizer (NOR) regions. The integrase probe showed a similar pattern. The 5′-untranslated leader (UTL) probe, expected to be the most rapidly evolving component, labeled chromosomes in a dispersed and non-uniform manner, concentrated in the distal regions, possibly indicating a targe site preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abbo S, Dunford RP, Foote TN, Reader SM, Flavell RB, Moore G: Organization of retro-element and stem-loop repeat families in the genomes and nuclei of cereals. Chromosome Res 3: 5–15 (1995).

    PubMed  Google Scholar 

  2. Ahn S, Anderson JA, Sorrells ME, Tanksley SD: Homeologous relationships of rice, wheat, and maize chromosomes. Mol Gen Genet 241: 483–490 (1993).

    PubMed  Google Scholar 

  3. Ahn S, Tanksley SD: Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90: 7980–7984 (1993).

    PubMed  Google Scholar 

  4. Anamthawat-Jónsson K, Reader SM: Pre-annealing of total genomic DNA probes for simultaneous in situ hybridization in cereal species. Genome 38: 814–816 (1995).

    PubMed  Google Scholar 

  5. Boeke JD, Corces VG: Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43: 403–434 (1989).

    Article  PubMed  Google Scholar 

  6. Bureau TE, Wessler SR: Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294 (1992).

    Article  PubMed  Google Scholar 

  7. Bureau TE, Wessler SR: Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91: 1411–1415 (1994).

    PubMed  Google Scholar 

  8. Bureau TE, Wessler SR: Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916 (1994).

    Article  PubMed  Google Scholar 

  9. Chalker DL, Sandmeyer SB: Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126: 837–850 (1990).

    PubMed  Google Scholar 

  10. Doolittle RF, Feng D-F, Johnson MS, McClure MA: Origins and evolutionary relationships of retroviruses. Q Rev Biol 64: 1–30 (1989).

    Article  PubMed  Google Scholar 

  11. Finnegan DJ: Eukaryotic transposable elements and genome evolution. Trends Genet 5: 103–107 (1989).

    Article  PubMed  Google Scholar 

  12. Flavell AJ, Smith DR, Kumar A: Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231: 233–242 (1992).

    PubMed  Google Scholar 

  13. Flavell RB, O'Dell M, Hutchinson J: Nucleotide sequence organization in plant chromosomes and evidence for sequence translocation during evolution. Cold Spring Harbor Symp Quant Biol 45: 501–508 (1981).

    PubMed  Google Scholar 

  14. Grandbastien M-A: Retroelements in higher plants. Trends Genet 8: 103–108 (1992).

    PubMed  Google Scholar 

  15. Grandbastien M-A, Spielmann A, Caboche M: Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380 (1989).

    PubMed  Google Scholar 

  16. Hajihosseini M, Iavachev L, Price J: Evidence that retroviruses integrate into post-replication host DNA. EMBO J 12: 4969–4974 (1993).

    PubMed  Google Scholar 

  17. Hirochika H, Fukuchi A, Kikuchi F: Retrotransposon families in rice. Mol Gen Genet 233: 209–216 (1992).

    PubMed  Google Scholar 

  18. Ji H, Moore DP, Blomberg MA, Braiterman LT, Voytas DF, Natsoulis G, Boeke JD: Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018 (1993).

    Article  PubMed  Google Scholar 

  19. Johns MA, Babcock MS, Fuerstenberg SM, Fuerstenberg SI, Freeling M, Simpson RB: An unusually compact retrotransposon in maize. Plant Mol Biol 12: 633–642 (1989).

    Google Scholar 

  20. Joshi CP, Nguyen HT: 5′ untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins. Nucl Acids Res 23: 541–549 (1995).

    PubMed  Google Scholar 

  21. Konieczny A, Voytas DF, Cummings MP, Ausubel FM: A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809 (1991).

    PubMed  Google Scholar 

  22. Kozak M: Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266: 19867–19870 (1991).

    PubMed  Google Scholar 

  23. Lee D, Ellis THN, Turner L, Hellens RP, Cleary WG: A copia-like element in Pisum demonstrates the use of dispersed repeated sequences in genetic analysis. Plant Mol Biol 15: 707–722 (1990).

    Article  PubMed  Google Scholar 

  24. Manninen I, Schulman AH: BARE-1, a Copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22: 829–846 (1993).

    Article  PubMed  Google Scholar 

  25. Moore G, Cheung W, Schwarzacher T, Flavell R: BIS 1, a major component of the cereal genome and a tool for studying genomic organization. Genomics 19: 469–476 (1991).

    Google Scholar 

  26. Moore G, Lucas H, Batty N, Flavell R: A family of retrotransposons and associated genomic variation in wheat. Genomics 10: 461–468 (1991).

    PubMed  Google Scholar 

  27. Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ: The Ty1-copia group of retrotransposons in Vicia species: copy number sequence heterogeneity and chromosomal localisation. Mol Gen Genet, in press (1996).

  28. Pouteau S, Huttner E, Grandbastien M-A, Caboche M: Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10: 1911–1918 (1991).

    PubMed  Google Scholar 

  29. Pouteau S, Spielmann A, Meyer C, Grandbastien M-A, Caboche M: Effects of Tnt1 tobacco retrotransposon insertion on target gene transcription. Mol Gen Genet 228: 233–239 (1991).

    Article  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  31. Sandmeyer SB, Hansen LJ, Chalker DL: Integration specificity of retrotransposons and retroviruses. Annu Rev Genet 24: 491–518 (1990).

    Article  PubMed  Google Scholar 

  32. Schmidt D, Graner A: Genomic organization and sequence diversity of the long terminal repeat (LTR) of the BARE-1 retrotransposon family in barley. Barley Genet Newsl 24: 24–27 (1994).

    Google Scholar 

  33. Schwarzacher T, Leitch AR: Enzymatic treatment of plant material to spread chromosomes for in situ hybridizaton. In: Isaac PG (ed) Methods in Molecular Biology, pp. 153–160, Humana Press, Totawa, NJ (1994).

    Google Scholar 

  34. Smyth DR: Plant retrotransposons. In: Verma DPS (ed) Control of Plant Gene Expression, pp. 1–15. CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  35. Smyth DR, Kalitsis P, Joseph JL, Sentry JW: Plant retrotansposons from Lilium henryi is related to Ty3 of yeast and the Gypsy group of Drosophila. Proc Natl Acad Sci USA 86: 5015–5019 (1989).

    PubMed  Google Scholar 

  36. Svitashev S, Bryngelsson T, Vershinin A, Pedersen C, Säll T, von Bothmer R: Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences. Theor Appl Genet 89: 801–810 (1994).

    Article  Google Scholar 

  37. Vander Wiel PL, Voytas DF, Wendel JF: Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36: 429–447 (1993).

    PubMed  Google Scholar 

  38. Varagona MJ, Purugganan M, Wessler SR: Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820 (1992).

    Article  PubMed  Google Scholar 

  39. Varmus HE: Retroviruses. In: Shapiro JA (ed) Mobile Genetic Elements, pp. 411–503. Academic Press, New York (1983).

    Google Scholar 

  40. Vershinin AV, Salina EA, Solovyov VV, Timofeyeva LL: Genomic organization, evolution, and structural peculiarities of highly repetitive DNA of Hordeum vulgare. Genome 33: 441–449 (1990).

    PubMed  Google Scholar 

  41. Vershinin AV, Salina EA, Svitashev SK: Is there a connection between genomic changes and wide hybridization? Hereditas 116: 213–217 (1992).

    PubMed  Google Scholar 

  42. Voytas DF, Cummings MP, Konieczny AK, Ausubel FM, Rodermel SR: Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128 (1992).

    PubMed  Google Scholar 

  43. White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: A role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796 (1994).

    PubMed  Google Scholar 

  44. Suoniemi A, Narvanto A, Schulman AH: The BARE retrotranspon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suoniemi, A., Anamthawat-Jónsson, K., Arna, T. et al. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol 30, 1321–1329 (1996). https://doi.org/10.1007/BF00019563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019563

Key words

Navigation