Skip to main content
Log in

Biogeochemistry: its origins and development

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The history of how aspects of biology, geology and chemistry came together over the past three centuries to form a separate discipline known as biogeochemistry is described under four major headings: metabolic aspects, geochemical aspects, biogeochemical cycles, and the origin of life. A brief chronology of major conceptual advances is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiton W (1811) Treatise on the Origin, Qualities, and Cultivation of Moss-Earth, with Directions for Converting It Into Manure. Wilson and Paul, Air, Scotland

    Google Scholar 

  • Anders E (1989) Prebiotic organic matter from comets and asteroids. Nature 342: 255–257

    Google Scholar 

  • Anonymous (1875) The organic origin of the earth's crust. Scientific American 32: 352

  • Arnold JR & Libby WF (1949) Age determination by radiocarbon content; checks with samples of known age. Science 110: 678–680

    Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine, Series 5, 41: 273–276

    Google Scholar 

  • Arrhenius G (1952) Sediment cores from the East Pacific. Reports of the Swedish Deep Sea Expeditions, 1947–1948, vol. 5, fasc. 1, part 1, 227 pp

  • Atwater WD (1884–1885) On the acquisition of atmospheric nitrogen by plants. American Chemical Journal 6: 365–388

    Google Scholar 

  • Atwater WD (1886) On the liberation of nitrogen from its compounds and the acquisition of atmospheric nitrogen by plants. American Chemical Journal 8: 398–420

    Google Scholar 

  • Baas Becking LGM, Kaplan IR & Moore D (1960) Limits of natural environments in terms of pH and oxidation-reduction potentials. Journal of Geology 68: 243–284

    Google Scholar 

  • Barrett E & Brodin G (1955) The acidity of Scandinavian precipitation. Tellus 7: 251–257

    Google Scholar 

  • Becker GF (1910) The age of the earth. Smithsonian Miscellaneous Collections 56(6), 28 pp

  • Becquerel E (1868) La Lumiére. Quoted by Green JR (1909) A History of Botany 1860–1900. Clarendon Press, Oxford

    Google Scholar 

  • Beijerinck MW (1895) Über Spirillum desulfuricans als Ursache von Sulfat-reduction. Centralblatt für Bakteriologie und Parasitenkunde 1: 1–9, 49–59, 104–115

    Google Scholar 

  • Beijerinck MW (1901) Über oligonitrophile Mikroben. Centralblatt für Bakteriologie und Parasitenkunde II, 7: 561–582. Seen in translation by Brock 1961

    Google Scholar 

  • Berg K (1951) The content of limnology demonstrated by F.-A. Forel and August Thienemann on the shore of Lake Geneva. Proceedings of the International Association of Theoretical and Applied Limnology 11: 41–57

    Google Scholar 

  • Bergman TO (1779–1780) Opuscula Physica et Chemica. Seen in translation by Cullen E (1784). Murray, London, England

  • Berkner LV, & Marshall LC (1965) History of major atmospheric components. Proceedings of the National Academy of Science 53: 1215–1226

    Google Scholar 

  • Berthelot M (1860) Chimie Organique Fondée sur la Synthése. 2 volumes. Mallet-Bachelier, Paris

  • Berthelot M (1885) Fixation directe de l'azote atmospherique libre par certains terrains argileux. Comptes Rendus de l'Académie des Sciences 101: 775–784

    Google Scholar 

  • Binford MW, Deevey ES & Crisman TL (1983) Paleolimnology: a historical perspective on lacustrine ecosystems. Annual Reviews of Ecology and Systematics 14: 255–286

    Google Scholar 

  • Birge EA (1906) Gases dissolved in the waters of Wisconsin lakes. Transactions of the American Fisheries Society 35: 143–163

    Google Scholar 

  • Birge EA, & Juday C (1911) The inland lakes of Wisconsin: the dissolved gases of the water and their biological significance. Bulletin of the Wisconsin Geological and Natural History Survey. Number 22, Scientific Series Number 7, 259 pp

  • Bischof G (1854) Elements of Chemical and Physical Geology, 3 volumes. Translated by Paul BH, & Drummond J from the German edition (1847–1854). Cavendish Society, London, England

  • Bolin B & Cook R (Eds) (1983) The Major Biogeochemical Cycles and Their Interactions. Wiley, New York

  • Bolin B, Rosswall T, Richey JE, Freney JR, Ivanov MV & Rodhe H (1983a) C,N,P, and S cycles: major reservoirs and fluxes. In: Bolin B & Cook RB (Eds) The Major Biogeochemical Cycles and Their Interactions (pp 41–65). Wiley, New York

    Google Scholar 

  • Bolin B, Crutzen PJ, Vitousek PM, Woodmansee RG, Goldberg ED & Cook RB (1983b) Interactions of biogeochemical cycles. In: Bolin & Cook RB (Eds) The Major Biogeochemical Cycles and Their Interactions (pp 1–39). Wiley, New York

    Google Scholar 

  • Boston PJ (1989) Gaia: a new look at global ecology and evolution. In: Singer SF (Ed) Global Climate Change, Human and Natural Influences (pp 385–400), Paragon House, New York

    Google Scholar 

  • Boussingault JB (1838) Recherches chimiques sur la végetation, entreprises dans le but d'examiner si les plantes prennent de l'azote à l'atmosphére. Annales de Chimie et de Physique, Series 2, 67: 5–54 and 69: 353–367

    Google Scholar 

  • Bowen HJM (1979) Environmental Chemistry of the Elements. Academic Press, London

    Google Scholar 

  • Boyle R (ca.1673) Observations and experiments on the saltness of the sea. Seen in Birch T (Ed) (1966) The Works of the Honourable Robert Boyle, vol 3 (pp 764–780). G. Olms, Hildesheim, Germany

  • Brock TD (Ed) (1961) Milestones in Microbiology. Prentice-Hall, Englewood Cliffs, New Jersey

  • Brock TD & Schlegel HG (1989) Introduction. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 1–15). Springer-Verlag, Berlin

    Google Scholar 

  • Broecker WS (1985) How to Build a Habitable Planet. Eldigio Press, Palisades, New York

    Google Scholar 

  • Brooke JH (1968) Wöhler's urea and its vital force?: A verdict from the chemists. Ambix 15: 84–114

    Google Scholar 

  • Brooks RR (1972) Geobotany and Biogeochemistry in Mineral Exploration. Harper and Row, New York

    Google Scholar 

  • Brown H (1954) The Challenge of Man's Future. Viking Press, New York

    Google Scholar 

  • Browne CA (1942) In: Moulton FR (Ed) Liebig and After Liebig. (pp 71–82). American Association for the Advancement of Science, Washington, District of Columbia

  • Browne CA (1944) A source book of agricultural chemistry. Chronica Botanica 8: 1–290

    Article  CAS  PubMed  Google Scholar 

  • Buchner E (1897) Alkoholische Gährung ohne Hefezellen. Berichte der Deutschen Chemische Gesellschaft 30: 117–124. Seen in translation by Brock (1961)

    Google Scholar 

  • Buffon GLL (1779) Les Époques de la Nature. See volume 5, Oeuvres Complétes de Buffon (1857). Delahays, Paris

  • Butlin KR & Postgate JR (1954) The microbiological formation of sulphur in Cyrenaican lakes. In: Cloudsley-Thompson JL (Ed) Biology of Deserts (pp 112–122). Institute of Biology, London

    Google Scholar 

  • Cagniard-Latour C (1838) Mémoire sur la fermentation vineuse. Annales de Chimie et de Physique 68: 206–222. Seen in translation by Brock (1961)

    Google Scholar 

  • Callendar GS (1938) The artificial production of carbon dioxide and its influences on temperature. Quarterly Journal of the Royal Meteorological Society 64: 223–237

    Google Scholar 

  • Callendar GS (1949) Can carbon dioxide influence climate? Weather 4: 310–314

    Google Scholar 

  • Cavendish H (1767) Experiments on Rathbone-Place water. Philosophical Transactions of the Royal Society of London 57: 92–108

    Google Scholar 

  • Cess RD (1991) Positive about water feedback. Nature 349: 462–463

    Google Scholar 

  • Chamberlin TC (1897) A group of hypotheses bearing on climatic changes. Journal of Geology 5: 653–683

    Google Scholar 

  • Chamberlin TC (1898) The influence of great epochs of limestone formation upon the constitution of the atmosphere. Journal of Geology 6: 609–621

    Google Scholar 

  • Chamberlin TC (1899) An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. Journal of Geology 7: 545–584, 667–685, 751–787

    Google Scholar 

  • Chamberlin TC & Chamberlin RT (1908) Early terrestrial conditions that may have favored organic synthesis. Science 28: 897–911

    Google Scholar 

  • Chang S, DesMarais D, Mack R, Miller SL & Strathearn GE (1983) Prebiotic organic synthesis and the origin of life. In: Schopf JW (Ed) Earth's Earliest Biosphere: Its Origin and Evolution (pp 53–92). Princeton University Press

  • Chyba CF, Thomas PJ, Brookshaw L & Sagan C (1990) Cometary delivery of organic molecules to the early earth. Science 249: 366–373

    Google Scholar 

  • Clarke FW (1908) The Data of Geochemistry. Bulletin of the U.S. Geological Survey, Number 770, 716 pp

  • Cloud PE (1968) Atmospheric and hydrospheric evolution on the primitive earth. Science 160: 729–736

    Google Scholar 

  • Cloud PE (1983) Early biogeologic history: the emergency of a paradigm. In: Schopf, J.W. (Ed) Earth's Earliest Biosphere: Its Origin and Evolution (pp 14–31). Princeton University Press

  • Cloud PE (1988) Gaia modified. Science 240: 1716

    Google Scholar 

  • Cloud PE (1989) Biologic evolution through the geological eons. In: Encyclopedia of Physical Science and Technology, 1989 Yearbook (pp 35–51). Academic Press, San Diego

    Google Scholar 

  • Coffin CC, Hayes FR, Jodrey LH & Whiteway SG (1949) Exchange of materials in a lake as studied by the addition of radioactive phosphorus. Canadian Journal of Research, Series D, 27: 207–222

    Google Scholar 

  • Cohn FJ (1872) Über Bakterien, die Kleinsten Leben den Wesen. Seen in translation by Dolley CS (1881), published 1939. Johns Hopkins Press

  • Collard P (1976) The Development of Microbiology. Cambridge University Press

  • Conway EJ (1942) Mean geochemical data in relation to oceanic evolution. Proceedings of the Royal Irish Academy, Series B, 48: 119–159

    Google Scholar 

  • Conway EJ (1943) The chemical evolution of the ocean. Proceedings of the Royal Irish Academy, Series B, 48: 161–212

    Google Scholar 

  • Cowling EB (1982) A historial resumé of progress in scientific and public understanding of acid precipitation and its consequences. Environmental Science and Technology 16: 110A–123A

  • Dampier WC (1948) A History of Science. Cambridge University Press

  • Daniell JF (1841) On the spontaneous evolution of sulphuretted hydrogen in the waters of the western coast of Africa, and of other localities. Philosophical Magazine, Series 3, 19: 1–19

    Google Scholar 

  • Darwin C (1871) Letter quoted in Bernal JD (1967) The Origin of Life. Weidenfeld and Nicholson, London

    Google Scholar 

  • Davy H (1813) Elements of Agricultural Chemistry. Seen in third edition (1821). Longman, Hurst, Rees, Orme, and Brown, London

  • Deevey ES (1970a) In defense of mud. Bulletin of the Ecological Society of America 51: 5–8

    Google Scholar 

  • Deevey ES (1970b) Mineral cycles. Scientific American 233: 149–158

    Google Scholar 

  • Deevey ES (1973) Sulfur, nitrogen, and carbon in the biosphere. In: Woodwell GM & Pecan EV (Eds) Carbon and the Biosphere (pp 182–190). U.S. Atomic Energy Commission, Technical Information Center, Office of Information Services, CONF-720510

  • Degens ET (1989) Perspectives on Biogeochemistry. Springer Verlag, Berlin

    Google Scholar 

  • de la Methiére JC (1797) Theorie de la Terre, volume 4, second edition. Maradna, Paris

  • de Saussure NT (1804) Recherches chimiques sur la végétation. Nyon, Paris

    Google Scholar 

  • Digby K (1669) A Discourse Concerning the Vegetation of Plants. Williams, London

    Google Scholar 

  • Drake FD (1962) Intelligent Life in Space. Macmillan, New York

    Google Scholar 

  • Dumas JPA (1841) On the chemical statics of organized beings. Philosophical Magazine, Series 3, 19: 337–347 and 456–469

    Google Scholar 

  • Dumas J & Boussingault JB (1844) The Chemical and Physical Balance of Nature. Seen in third edition, Gardner JB (Ed) Saxton and Miles, New York

  • Ebermayer E (1876) Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues. Springer, Berlin

    Google Scholar 

  • Ehrenberg CG (1836) Vorläufige Mittheilungen über das wirkliche Vorkommen fossiler Infusorien and ihre grosse Verbreitung. Annalen der Physik and Chemie 38: 213–227

    Google Scholar 

  • Einsele W (1936) Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Archiv für Hydrobiologie 29: 664–686

    Google Scholar 

  • Forchhammer G (1965) On the composition of sea-water in the different parts of the ocean. Philosophical Transactions of the Royal Society of London 155: 203–262

    Google Scholar 

  • Foster RF & Rostenbach RE (1954) Distribution of radioisotopes in Columbia River. Journal of the American Waterworks Association 46: 633–640

    Google Scholar 

  • Fourier M (1827) Mémoire sur les températures du globe terrestre et des espaces plané-etaires. Memoires de l'Académie Royale des Sciences de l'Institute de France 7: 569–604

    Google Scholar 

  • Gaarder T & Gran HH (1972) Investigations of the production of Plankton in the Oslo Fjord. Rapports et Procés-Verbaux des Réunions, Conseil Permanent International pour l'Exploration de la Mer 42, 48 pp

  • Gayon U & Dupetit G (1885) Recherches sur la réduction des nitrates par les organismes microscopiques. Annales de la Science Agronomique Francaise et Etrangere 2 (1): 226–325

    Google Scholar 

  • Goldberg ED (1958) The processes regulating the composition of sea water. Journal of Chemical Education 35: 116–119

    Google Scholar 

  • Goldberg ED (1974) The surprise factor in marine pollution studies. Marine Technology Society Journal 8: 29–34

    Google Scholar 

  • Goldschmidt VM (1934) Drei Vorträge über Geochemie. Geologiska Föreningens Förhandlingar 56: 385–427

    Google Scholar 

  • Goldschmidt VM (1934) Geochemistry (A. Muir, ed). Clarendon Press, Oxford

  • Gorham E (1955) On the acidity and salinity of rain. Geochimica et Cosmochimica Acta 7: 231–239

    Google Scholar 

  • Gorham E (1957) The ionic composition of lowland lake waters from Cheshire, England. Limnology and Oceanography 2: 22–27

    Google Scholar 

  • Gorham E (1958) The influence and importance of daily weather conditions in the supply of chloride, sulphate, and other ions to fresh waters from atmospheric precipitation. Philosophical Transactions of the Royal Society of London, Series B, 241: 147–178

    Google Scholar 

  • Gorham E (1961) Factors influencing supply of major ions to inland waters, with special reference to the atmosphere. Geological Society of America Bulletin 72: 795–840

    Google Scholar 

  • Gorham E (1982) Robert Angus Smith, F.R.S., and “chemical climatology”. Notes and Records of the Royal Society of London 36: 267–272

    Google Scholar 

  • Gorham E (1989) Scientific understanding of ecosystem acidification: a historical review. Ambio 18: 150–154

    Google Scholar 

  • Gorham E (1990) An ecologists' guide to the problems of the 21st century. American Biology Teacher 52: 480–483

    Google Scholar 

  • Gorham E & Gordon AG (1960a) Some effects of the smelter pollution northeast of Falconbridge, Ontario. Canadian Journal of Botany 38: 307–312

    Google Scholar 

  • Gorham E & Gordon AG (1960b) The influence of smelter fumes upon the chemical composition of lake waters near Sudbury, Ontario, and upon the surrounding vegetation. Canadian Journal of Botany 38: 477–487

    Google Scholar 

  • Gorham E, Vitousek PM & Reiners WA (1979) The regulation of chemical budgets over the course of ecosystem succession. Annual Review of Ecology and Systematics 10: 53–84

    Google Scholar 

  • Guerlac H (1973) Antoine-Laurent Lavoisier. Dictionary of Scientific Biography 8: 66–91

    Google Scholar 

  • Haldane JBS (1929) The origin of life. The Rationalist Annual, pp 3–10

  • Hales S (1727) Vegetable Staticks. Seen in third edition (1738). Innys and Manby, Woodward and Peele, London, England

  • Halley E (1687) An estimate of the quantity of vapour raised out of the sea by the warmth of the sun. Philosophical Transactions of the Royal Society of London 16: 336–370

    Google Scholar 

  • Halley E (1691) An account of the circulation of the watery vapours of the sea, and of the causes of springs. Philosophical Transactions of the Royal Society of London 16: 468–473

    Google Scholar 

  • Halley E (1694) An account of the evaporation of water. Philosophical Transactions of the Royal Society of London 18: 183–190

    Google Scholar 

  • Halley E (1715) A short account of the cause of the saltness of the ocean, and of the several lakes that emit no rivers; with a proposal, by help thereof, to discover the age of the world. Philosophical Transactions of the Royal Society of London 29: 296–300

    Google Scholar 

  • Hansen JE (1988) The greenhouse effect: impacts on current global temperature and regional heat waves. Statement to the United States Senate Committee on Energy and Natural Resources, 23 June 1988

  • Hanson WC & Kornberg HA (1956) Radioactivity in terrestrial animals near an atomic energy site. Proceedings of an International Conference on the Peaceful Uses of Atomic Energy, Volume 3, pp 385–388

    Google Scholar 

  • Hanya T & Akiyama T (1987) The essence of sociogeochemistry. Integrated Studies in Urban Ecosystems as the Basis of Urban Planning 2: 22–31

    Google Scholar 

  • Hasler AD (1947) Eutrophication of lakes by domestic sewage. Ecology 28: 383–395

    Google Scholar 

  • Hayes FR, McCarter JA, Cameron ML & Livingstone DA (1952) On the kinetics of phosphorus exchange in lakes. Journal of Ecology 40: 202–216

    Google Scholar 

  • Heilbron JL (1976) Volta, Alessandro Giuseppe Antonio Anastasio. Dictionary of Scientific Biography 14: 69–82

    Google Scholar 

  • Hellriegel H & Wilfarth H (1888) Untersuchungen über die Stickstoffernährung der Gramineen und Leguminosen. Supplementary issue, Zeitschrift des Vereins für die Rübenzuckerindustrie. Kayssler, Berlin

  • Henderson LJ (1913) The Fitness of the Environment: An Inquiry into the Biological Significance of the Properties of Matter. Macmillan, New York

    Google Scholar 

  • Henderson-Sellers A (1990) Modelling and monitoring “greenhouse” warming. Trends in Ecology and Evolution 5: 270–275

    Google Scholar 

  • Herbertson AJ (1913) The higher units: a geographical essay: Scientia 14: 199–212. Seen reprinted in Geography 50: 332–342 (1965)

  • Hern WM (1990) Why are there so many of us? Description of a planetary ecopathological process. Population and Environment 12: 9–39

    Google Scholar 

  • Hilgard EW (1921) Soils, Their Formation, Properties, Composition, and Relations to Climate and Plant Growth. Macmillan, London

    Google Scholar 

  • Hill R (1939) Oxygen produced by isolated chloroplasts. Proceedings of the Royal Society of London, Series B, 127: 192–210

    Google Scholar 

  • Hitchock DR & Wechsler AE (1972) Biological cycling of atmospheric trace gases. Final Report (NASA-CR-126663) to the National Aeronautic and Space Administration, prepared by Arthur D. Little, Inc., Cambridge, Massachusetts

  • Hitchcock DR & Lovelock JE (1967) Life detection by atmospheric analysis. Icarus 7: 149–159

    Google Scholar 

  • Hoff HE (1964) Nicolaus of Cusa, van Helmont, and Boyle: the first experiment of the Renaissance in quantitative biology and medicine. Journal of the History of Medicine and Allied Sciences 19: 99–117

    Google Scholar 

  • Home F (1757) The Principles of Agriculture and Vegetation. Hamilton and Balfour, Edinburgh

    Google Scholar 

  • Hooke R (1687) An account of several curious observations and experiments concerning the growth of trees. Philosophical Transactions of the Royal Society of London 16: 307–313

    Google Scholar 

  • Hooke R (1705) The Posthumous Works of Robert Hooke. Seen in reissue with a new introduction by R.S. Westfall (1969). Johnson Reprint Corporation, New York

  • Hoppe-Seyler F (1895) Über die Verteilung absorbierter Gase im Wasser des Bodensees und ihre Beziehung zu den in ihm lebenden Tiere und Pflanzen. Schriften des Vereins für Geschichte des Bodensees und Seiner Umgebung 24: 29–48

    Google Scholar 

  • Houghton H (1955) On the chemical composition of fog and cloud water. Journal of Meteorology 12: 355–357

    Google Scholar 

  • Hunt JM (1972) Distribution of carbon in crust of earth. Bulletin of the American Association of Petroleum Geologists 56: 2273–2277

    Google Scholar 

  • Hunt WF (1915) The origin of the sulphur deposits of Sicily. Economic Geology 10: 543–579

    Google Scholar 

  • Hutchinson GE (1943) The biogeochemistry of aluminum and of certain related elements. Quarterly Review of Biology 18: 1–29, 128–153, 242–262, and 331–363

    Google Scholar 

  • Hutchinson GE (1948) On living in the biosphere. Scientific Monthly 67: 393–398

    Google Scholar 

  • Hutchinson GE (1950) Survey of contemporary knowledge of biogeochemistry. III. The biogeochemistry of vertebrate excretion. Bulletin of the American Museum of Natural History, Number 96, 554 pp

  • Hutchinson GE (1954) The biochemistry of the terrestrial atmosphere. In Kuiper, G.P. (Ed) The Earth as a Planet (pp 371–433). University of Chicago Press

  • Hutchinson GE (1957) A Treatise on Limnology, vol. 1, Geography, Physics and Chemistry. Wiley, New York

  • Hutchinson GE & Wollack A (1940) Studies on Connecticut lake sediments. II. Chemical analyses of a core from Linsley Pond. American Journal of Science 238: 493–517

    Google Scholar 

  • Hutchinson GE & Bowen VT (1947) A direct determination of the phosphorus cycle in a small lake. Proceedings of the National Academy of Sciences 33: 148–153

    Google Scholar 

  • Hutchinson GE & Bowen VT (1950) Limnological studies in Connecticut. IX. A quantitative radiochemical study of the phosphorus cycle in Linsley Pond. Ecology 31: 194–203

    Google Scholar 

  • Hutton J (1785) System of the Earth. Seen in White GW (Ed), (1970). Contributions to the History of Geology 5: 1–30

  • Hutton J (1795) Theory of the Earth, 2 volumes. Cadell, Junior, and Davies, London, England. Seen in reprint (1959). Wheldon and Wesley, Cadicote, Hertfordshire, England

  • Ingenhousz J (1779) Experiments upon vegetables, discovering their great power of purifying the common air in the sunshine, etc. Elmsley, London. Seen in an abridged edition with annotations by Reed (1949)

    Google Scholar 

  • Jameson R (1800) On peat or turf. Transactions of the Dublin Society, Number 1, 10 pp

  • Jensen ML & Nakai N (1961) Sources and isotopic composition of atmospheric sulfur. Science 134: 2102–2104

    Google Scholar 

  • Jensen S & Jernelöv A (1969) Biological methylation of mercury in aquatic organisms. Nature 223: 753–754

    Google Scholar 

  • Jodin (1862) Du rle physiologique de l'azote. Comptes Rendus de l'Académie des Sciences 55: 612–615

    Google Scholar 

  • Joffe JS (1931) Soil profile studies: III. The process of podzolization. Soil Science 32: 303–323

    Google Scholar 

  • Johnson SW (1866) Peat and Its Uses As Fertilizer and Fuel. Orange Judd and Co., New York

    Google Scholar 

  • Johnston JFW (1843) Lectures on Agricultural Chemistry and Geology. Wiley and Putnam, New York. Seen in second edition (1847) Blackwood, Edinburgh, Scotland

    Google Scholar 

  • Joly J (1899) An estimate of the geological age of the earth. Transactions of the Royal Society of Dublin 7: 23–66

    Google Scholar 

  • Joly J (1922) On a new method of gauging the discharge of rivers. Scientific Proceeding of the Royal Dublin Society 16: 489–491

    Google Scholar 

  • Joulie H (1885) Fixation de l'azote atmospherique dans le sol cultivé. Comptes Rendus de l'Académie des Sciences 101: 1008–1011

    Google Scholar 

  • Julien A (1879) On the geological action of the humus acids. Proceedings of the American Association for the Advancement of Science 28: 311–410

    Google Scholar 

  • Keen R (1976) Friedrich Wöhler. Dictionary of Scientific Biography 14: 474–479

    Google Scholar 

  • Kerr RA (1988) No longer wilful, Gaia becomes respectable. Science 240: 393–395

    Google Scholar 

  • Koene C-J (1856) De la formation de la terre, de la composition de l'air à l'origine, des changements que l'atmosphére à éprouvés depuis, et de l'influence que ces changements ont sur la durée de la vie de l'homme et sur l'existence de son éspece. In: Conferences Publiques sur la Création à Partir de la Formation de la Terre jusqu'a l'Extinction de l'Espéce Humaine ou Apercu d'Histoire Naturelle de l'Air et de Miasmes à propos des Fabriques d'Acides et des Plantes dont leurs Travaux Font l'Objet (pp 7–32). Larcier, University Library, Brussels

    Google Scholar 

  • Kovalevsky AL (1987) Biogeochemical Exploration for Mineral Deposits, 2nd ed. VNU Science Press, Utrecht

    Google Scholar 

  • Krumbein WE (Ed) (1978) Environmental Biogeochemistry and Geomicrobiology, 3 vol. Ann Arbor Science, Ann Arbor, Michigan

  • Krumholz LA (1956) Observations on the fish populations of a lake contaminated by radioactive wastes. Bulletin of the American Museum of Natural History 110: 277–368

    Google Scholar 

  • Kvenvolden KA (Ed) (1974) Geochemistry and the Origin of Life — Benchmark Papers in Geology. Dowden, Hutchinson, Ross, Stroudsburgh, Pennsylvania

  • Lamarck JB (1802) Hydrogéologie, translated by Garozzi AV (1964). University of Illinois Press

  • Lambridis H (1976) Empedocles. University of Alabama Press

  • Lane AC (1917) Lawson's correlation of the Pre-Cambrian era. American Journal of Science, Series 4, 43: 42–48

    Google Scholar 

  • Lane T (1769) On the solubility of iron in simple water, by the intervention of fixed air. Philosophical Transactions of the Royal Society of London 59: 216–227

    Google Scholar 

  • Lawes JB & Gilbert JH (1880 and 1900). Agricultural, botanical, and chemical results of experiments on the mixed herbage of permanent meadow, conducted for more than twenty years in succession on the same land, Part I. Philosophical Transactions of the Royal Society of London, Series B, 171: 289–416, and 192:139–209

    Google Scholar 

  • Lawes JB & Gilbert JH (1882) On the amount and composition of the rain and drainage waters collected at Rothamsted. Journal of the Royal Agricultural Society of England, Series 2, 18: 1–71

    Google Scholar 

  • Lawes JB, Gilbert JH & Pugh E (1861) On the sources of nitrogen of vegetation; with special reference to the question of whether plants assimilate free or uncombined nitrogen. Philosophical Transactions of the Royal Society of London 151 (2): 431–577

    Google Scholar 

  • LeChevalier HA & Solorotovsky M (1965) Three Centuries of Microbiology. McGraw-Hill, New York

    Google Scholar 

  • LeRoy ELEJ (1927) l'Exigence Ideáliste et la Fait d'Évolution. Boivin, Paris

    Google Scholar 

  • Libby WF (1952) Radiocarbon Dating. University of Chicago Press

  • Libby WF, Anderson EC & Arnold JR (1949) Age determination by radiocarbon content; world-wide assay of natural radiocarbon. Science 109: 227–228

    Google Scholar 

  • Liebig J (1839) Über die Erscheinungen der Gährung, Fäulnis and Verwesung. Seen in translation by Brock (1961)

  • Liebig J (1840) Chemistry in Its Applications to Agriculture. Seen in fourth edition (1849), Playfair L & Gregory M (Eds). Wiley, New York

  • Liebig J (1855) Die Grundsätze der Agrikulturchemie. F. Vieweg, Braunschweig

    Google Scholar 

  • Liebig J (1859) Letters on Modern Agriculture, Blyth J (Ed). Walton and Maberly, London

  • Likens GE, Bormann FH, Pierce RS, Eaton JS & Johnson NM (1977) Biogeochemistry of a Forested Ecosystem. Springer, New York

    Google Scholar 

  • Lindley D (1988) Is the Earth alive or dead? Nature 332: 483–484

    Google Scholar 

  • Lipman JG (1926) Soil life. In: Chamberlain JS (Ed) Chemistry in Agriculture (pp 52–75). The Chemical Foundation, New York

    Google Scholar 

  • Lovelock JE (1972) Gaia as seen through the atmosphere. Atmospheric Environment 6: 579–580

    Google Scholar 

  • Lovelock J.E. (1979) Gaia, a New Look at Life on Earth. Oxford University Press

  • Lovelock JE (1990) Hands up for the Gaia hypothesis. Nature 344: 100

    Google Scholar 

  • Lovelock JE & Margulis L (1974). Atmospheric homeostasis by and for the biosphere: The gaia hypothesis. Tellus 26: 2–9

    Google Scholar 

  • Lovelock JE & Whitfield M (1982) Life span of the biosphere. Nature 296: 561–563

    Google Scholar 

  • Lowenstam HA (1974) Impact of life on chemical and physical processes. In: Goldberg ED (Ed) The Sea, vol. 5, Marine Chemistry (pp 715–796). Wiley, New York

  • Lucretius TC (Undated) De Rerum Natura, Book 2, Verse 38. Seen in translation by Brown WH (1950) Lucretius on the Nature of Things (p 77). Rutgers University Press

  • MacBride D (1764) Experimental Essays. A. Millar, London

    Google Scholar 

  • Macgregor AM (1927) The problem of the Precambrian atmosphere. South African Journal of Science 24: 155–172

    Google Scholar 

  • Mackereth FJH (1957) Chemical analysis in ecology illustrated from Lake District tarns and lakes. I. Chemical analysis. Proceedings of the Linnaean Society of London 167: 161–175

    Google Scholar 

  • MacLeod RM (1965) The Alkali Acts administration, 1863–84: The emergence of the civil scientist. Victorian Studies 9: 85–112

    Google Scholar 

  • Mann C (1991) Lynn Margulis: science's unruly earth mother. Science 252: 378–381

    Google Scholar 

  • Marchal E (1893) Sur la production de l'ammoniaque dans le sol par les microbes. Bulletin de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, Classe des Sciences, Série 3, 25: 727–741

    Google Scholar 

  • Margulis L & Lovelock JE (1974) Biological modulation of the earth's atmosphere. Icarus 21: 471–489

    Google Scholar 

  • Margulis L & Lovelock JE (1989) Gaia and geognosy. In: Rambler MB, Margulis L & Fester L (Eds) Global Ecology: Towards a Science of the Biosphere (pp 1–30). Academic Press, Boston

    Google Scholar 

  • Marsh GP (1864) The Earth as Modified by Human Action. Seen in the last revision (1885). Scribner, New York

  • Marston JB, Oppenheimer M, Fujita RM & Gaffin SR (1991) Nature 349: 573–574

    Google Scholar 

  • Mattson S & Koutler-Andersson E (1954) Geochemistry of a raised bog. Annals of the Royal Agricultural College of Sweden 21: 321–366

    Google Scholar 

  • Mattson S, Sandberg G & Terning P-E (1944) Electro-chemistry of soil formation. VI. Atmospheric salts in relation to soil and peat formation and plant composition. Annals of the Agricultural College of Sweden 12: 101–118

    Google Scholar 

  • Mayer JR (1848) Celestial Mechanics, translated by Debus H. In: Youmans EL (Eds) The Correlation and Conservation of Forces (pp 215–359). Appleton, New York

    Google Scholar 

  • McElroy MB (1976) Chemical processes in the solar system: a kinetic perspective. In: Herschbach DR (Ed) Chemical Kinetics (pp 127–211), Butterworth, London

    Google Scholar 

  • Meusel (1875) De la putréfaction produite par les bactéries, en présence des nitrates alcalins. Journal de Pharmacie et de Chimie, Série 4, 22: 430–431

    Google Scholar 

  • Micklin PP (1988) Desiccation of the Aral Sea: a water-management disaster in the Soviet Union. Science 241: 1170–1176

    Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117: 528–529

    Google Scholar 

  • Miyake Y & Sugiura Y (1955) The radiochemical analysis of radio-nuclides in sea water collected near Bikini Atoll. Papers in Meteorology and Geophysics, Tokyo 6: 33–37

    Google Scholar 

  • Miyake Y, Sugiura Y & Kameda K (1955) On the distribution of radioactivity in the sea around Bikini Atoll in June, 1954. Papers in Meteorology and Geophysics, Tokyo 5: 253–262

    Google Scholar 

  • Molina MJ & Rowlandson FS (1974) Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249: 810–812

    Google Scholar 

  • Morel FMM & Hudson RJM (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (Ed) Chemical Processes in Lakes (pp 251–281). Wiley-Interscience, New York

    Google Scholar 

  • Mortimer CH (1941–1942) The exchange of dissolved substances between mud and water in lakes. Journal of Ecology 29: 280–329 and 30: 147–201

    Google Scholar 

  • Mulder GJ (1840) Untersuchungen über die Humussubstanzen. Journal für Praktische Chemie 21: 203–240 and 21: 321–370

    Google Scholar 

  • Munk WH, Ewing GC & Revelle RR (1949) Diffusion in Bikini Lagoon. Transactions of the American Geophysical Union 30: 59–66

    Google Scholar 

  • Murphy BF & Nier AO (1941) Variations in the relative abundance of the carbon isotopes. Physical Review 59: 771–772

    Google Scholar 

  • Nash LK (1957) Plants and the atmosphere. In: Conant JB (Ed) Harvard Case Histories in Experimental Science, Volume 2 (pp 325–436). Harvard University Press

  • Nier AO & Gulbranson EA (1939) Variations with relative abundance of the carbon isotopes. Journal of the American Chemical Society 61: 697–698

    Google Scholar 

  • Noddack W (1937) Der Kohlenstoff im Haushalt der Natur. Zeitschrift für Angewandte Chemie 50: 505–510

    Google Scholar 

  • Noddack I & Noddack W (1940) Die Haufigkeiten der Schwermetalle in Meeres Tieren. Arkiv för Zoologi 32A, Number 4, 35 pp

  • Odén S (1976) The acidity problem — an outline of concepts. In: Dochinger LS & Seliga TA (Eds) Proceedings of the First International Symposium on Acid Precipitation and the Forest Ecosystem (pp 1–36). USDA Forest Service General Technical Report NE-23

  • Odum EP (1953) Fundamentals of Ecology. Saunders, Philadelphia

    Google Scholar 

  • Oparin AI (1924) Proiskhozhdenie Zhizny. Izd. Moskovshii Rabochii. Seen in translation by Synge A in Bernal JD (1967) The Origin of Life (pp 199–234). Weidenfeld and Nicholson, London

  • Ornstein L (1982) A biologist looks at the numbers. Physics Today 35 (3): 27–31

    Google Scholar 

  • Partington JR (1948) A Short History of Chemistry, second edition. MacMillan, London

    Google Scholar 

  • Pasteur L (1857) Mémoire sur la fermentation apelée lactique. Comptes Rendus de l'Académie des Sciences 45: 913–916. Seen in translation by Brock (1961)

    Google Scholar 

  • Pasteur L (1861a) Animalcules infusoires vivant sans gaz oxygéne libre et déterminant des fermentations. Comptes Rendus de l'Académie des Sciences 52: 344–347. Seen in translation by Brock (1961)

    Google Scholar 

  • Pasteur L (1861b) Mémoire sur les corpuscles organisés qui existent dans l'atmosphére. Examen de la doctrine des genérations spontanées. Annales des Sciences Naturelles, Serie 4, 16: 5–98. Seen in translation by Brock (1961)

    Google Scholar 

  • Phipson TL (1893) The chemical constitution of the atmosphere from remote geological periods to the present time. Chemical News 67: 135–136

    Google Scholar 

  • Plass GN (1956) The carbon dioxide theory of climatic change. Tellus 8: 140–154

    Google Scholar 

  • Plattes G (1639) Discovery of Infinite Treasure Hidden Since the World's Beginning. Hutton, London

    Google Scholar 

  • Pomeroy LR (Ed) (1974) Cycles of Essential Elements. Dowden, Hutchinson, and Ross, Stroudsberg, Pennsylvania

  • Popper KR (1990) Pyrite and the origin of life. Nature 344: 387

    Google Scholar 

  • Priestley J (1772) Observations on different kinds of air. Philosophical Transactions of the Royal Society of London 62: 147–152

    Google Scholar 

  • Ranalli G (1982) Robert Hooke and the Huttonian theory. Journal of Geology 90: 319–325

    Google Scholar 

  • Ramanathan V (1975) Greenhouse effect due to chlorofluorocarbons: climatic implications. Science 190: 50–52

    Google Scholar 

  • Reade TM (1876–1877) Presidents' address. Proceedings of the Liverpool Geological Society 3: 211–235

    Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of the plankton. In: Daniel RJ (Ed) James Johnstone Memorial Volume (pp 176–192). University of Liverpool Press

  • Redfield AC (1958) The biological control of chemical factors in the environment. American Scientist 46: 204–221

    Google Scholar 

  • Redfield AC, Ketchum BH & Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (Ed) The Sea, Volume 2, The Composition of Sea-Water, Comparative and Descriptive Oceanography (pp 26–77). Wiley Interscience, New York

  • Reed HS (1942) A Short History of the Plant Sciences. Chronica Botanica, Waltham, Massachusetts

    Google Scholar 

  • Reed HS (1949) Jan Ingenhousz, plant physiologist, with a history of the discovery of photosynthesis. Chronica Botanica 11: 285–393

    Google Scholar 

  • Reiners WA (1986) Complementary models for ecosystems. American Naturalist 127: 59–73

    Google Scholar 

  • Rennie R (1810) Essays on the Natural History and Origin of Peat Moss, III–X (pp 237–665). Constable, Edinburgh

    Google Scholar 

  • Revelle R & Seuss HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric CO2 during the past decades. Tellus 9: 18–27

    Google Scholar 

  • Riley GA (1944) Carbon metabolism and photosynthetic efficiency. American Scientist 32: 132–134

    Google Scholar 

  • Riley GA (1953) Letter to the Editor. Journal du Conseil Internationale pour l'Exploration de la Mer 19: 85–89

    Google Scholar 

  • Roger J (1973) Georges-Louis Le Clerc, Comte de Buffon. Dictionary of Scientific Biography 2: 576–582

    Google Scholar 

  • Rogers WB & Rogers RE (1848) On the decomposition and partial solution of minerals, rocks, etc., by pure water and water charged with carbonic acid. American Journal of Science, Series 2, 5: 401–405

    Google Scholar 

  • Ruben S, Randall M, Kamen M & Hyde JL (1941) Heavy oxygen (018) as a tracer in the study of photosynthesis. Journal of the American Chemical Society 63: 877–879

    Google Scholar 

  • Rubey WW (1951) Geologic history of sea water: an attempt to state the problem. Geological Society of America Bulletin 62: 1111–1148

    Google Scholar 

  • Russell EJ (1912) Soil Conditions and Plant Growth. Longmans Green, London

    Google Scholar 

  • Russell MJ, Hall AJ & Gize AP (1990) Pyrite and the origin of life. Nature 344: 387

    Google Scholar 

  • Sagan C (1980) Cosmos. Random House, New York

    Google Scholar 

  • Salisbury EJ (1922) Stratification and hydrogen-ion concentration of the soil in relation to leaching and plant succession with special reference to woodlands. Journal of Ecology 9: 220–240

    Google Scholar 

  • Salisbury EJ (1925) Note on the edaphic succession in some dune soils with special reference to the time factor. Journal of Ecology 13: 322–328

    Google Scholar 

  • Salm-Horstmar WFKA (1856) Versuche und Resultate über die Nährung der Pflanzen. F. Vieweg, Braunschweig

    Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333: 313–318

    Article  CAS  Google Scholar 

  • Schindler DW (1985) The coupling of elemental cycles by organisms: Evidence from wholelake chemical perturbations. In: Stumm W (Ed) Chemical Processes in Lakes (pp 225–250). Wiley, New York

    Google Scholar 

  • Schlesinger WH (1989) Discussion: ecosystem structure and function. In: Roughgarden J, May RM & Levin SA (Eds) Perspectives in Ecological Theory (pp 268–274). Princeton University Press

  • Schlösing T (1868) Sur la decomposition des nitrates pendant les fermentations. Comptes Rendus de l'Academie des Sciences 66: 237–239

    Google Scholar 

  • Schlösing T (1873) Ëtude de la nitrification. Comptes Rendus de l'Academie des Sciences 77: 353–356

    Google Scholar 

  • Schlösing T & Muntz A (1877) Sur la nitrification par les ferments organisées. Comptes Rendus de l'Academie des Sciences 84: 301–303

    Google Scholar 

  • Schönbein CF (1838) Über die Ursache der Farbenveränderung, welche manche Körper unter den Einflusse der Wärme erleiden. Annalen der Physik and Chemie 45: 263–281

    Google Scholar 

  • Schopf JW (Ed) (1983) Earth's Earliest Biosphere: Its Origin and Development. Princeton University Press

  • Schroeder H (1919) Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde. Naturwissenschaften 7: 8–12

    Google Scholar 

  • Schwartzman DW & Volk T (1989) Biotic enhancement of weathering and the habitability of the planet. Nature 340: 457–460

    Google Scholar 

  • Schwann T (1837) Vorläufige Mittheilung, betreffend Versuche über die Weingährung und Fäulnis. Annalen der Physik und Chemie 41: 184–193. Seen in translation by Brock (1961)

    Google Scholar 

  • Shapiro J (1988) Introductory lecture at the international symposium “Phosphorus in Freshwater Ecosystems”, Uppsala, Sweden in October, 1985. Hydrobiologia 170: 9–17

    Google Scholar 

  • Slater AE (1951) Biological problems of space flight (a report of Professor J.B.S. Haldane's lecture to the British Interplanetary Society, 7 April 1951). Journal of the British Interplanetary Society 10: 154–158

    Google Scholar 

  • Slingo T (1988) Can plankton control climate? Nature 336: 421

    Google Scholar 

  • Smith RA (1849) On the air and water of towns. Report of the British Association for the Advancement of Science 18: 16–31

    Google Scholar 

  • Smith RA (1852) On the air and rain of Manchester. Memoirs of the Manchester Literary and Philosophical Society, Series 2, 10: 207–217

    Google Scholar 

  • Smith RA (1872) Air and Rain. Longmans, Green, London

    Google Scholar 

  • Spencer H (1844) Remarks on the theory of reciprocal dependence in animal and vegetable creations, as regards its bearing on paleontology. Philosophical Magazine, Series 3, 24: 90–94

    Google Scholar 

  • Sprengel C (1826) Über Pflanzenhumus, Humussäure and Humussäure Salze. Kastner's Archiv für Gesamte Naturlehre 8: 145–220

    Google Scholar 

  • Sprengel C (1837) Die Bodenkunde. Müller, Leipzig

    Google Scholar 

  • Sprengel C (1839) Die Lehre Vom Dünger. Müller, Leipzig

    Google Scholar 

  • Steeman-Nielsen E (1952) The use of radioactive carbon (C14) for measuring organic production in the sea. Journal du Conseil Internationale pour l'Exploration de la Mer 18: 117–140

    Google Scholar 

  • Stoddart DR (1986) On Geography and Its History. Basil Blackwell, Oxford

    Google Scholar 

  • Suess E (1875) Die Entstehung der Alpen. W. Braumüller, Vienna

    Google Scholar 

  • Sugawara K (1939) Chemical studies in lake metabolism. Bulletin of the Chemical Society of Japan 14: 375–451

    Google Scholar 

  • Swaine DJ (1988) Victor Moritz Goldschmidt's contributions to coal science. Fuel 67: 877–879

    Google Scholar 

  • Tan KH (1986) Degradation of soil minerals by organic acids. In: Huang PM & Schnitzer M (Eds) Interactions of Soil Minerals with Natural Organics and Microbes (pp 1–27). Soil Science Society of America; Special Publication Number 17, Madison, Wisconsin

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16: 284–307

    Google Scholar 

  • Teich M (1970) The historical foundation of modern biochemistry. In: Needham J (Ed) The Chemistry of Life (pp 171–191). Cambridge University Press

  • Thaer AD (1810) Grundsätze der Rationellen Landwirtschaft, Volume 1. Grasslerchen Buchhandlungen, Vienna, Austria. Seen in translation by Shaw W & Johnson CW (1844). Ridgway, Piccadilly, London

  • Thode HG, MacNamara J & Collins CB (1949) Natural variations in the isotopic content of sulphur and their significance. Canadian Journal of Research, Section B, 27: 361–373

    Google Scholar 

  • Thode HG, MacNamara J & Fleming WH (1953) Sulphur isotope fractionation in nature and geological and biological time scales. Geochimica et Cosmochimica Acta 3: 235–243

    Google Scholar 

  • Tipler FJ (1981) Extraterrestrial beings do not exist. Physics Today 34 (4): 9 and 70–71

    Google Scholar 

  • Transeau EN (1926) The accumulation of energy by plants. Ohio Journal of Science 26: 1–10

    Google Scholar 

  • Trudinger PA & Swaine DJ (Eds) (1979). Biogeochemical Cycling of Mineral-Forming Elements. Elsevier, Amsterdam

  • Tull J (1731) The Horse Hoeing Husbandry. Seen in the 1829 edition. Cobbett, London

  • Tyndall J (1861) On the absorption and radiation of heat by gases and vapours, and on the physical connection of radiation, absorption, and conduction. Philosophical Magazine, Series 4, 22: 169–194 and 273–285

    Google Scholar 

  • Urey HC (1952) On the early chemical history of the earth and the origin of life. Proceedings of the National Academy of Sciences 38: 351–363

    Google Scholar 

  • Vallentyne JR (1954) Biochemical limnology. Science 119: 605–606

    Google Scholar 

  • Vallentyne JR (1963) Environmental biophysics and microbial ubiquity. Annals of the New York Academy of Sciences 108: 342–352

    Google Scholar 

  • Vallentyne JR & Swabey YS (1955) A re-investigation of the history of Lower Linsley Pond, Connecticut. American Journal of Science 253: 313–340

    Google Scholar 

  • van Niel CB (1930) Photosynthesis of bacteria. In: Contributions to Marine Biology (pp 161–169). Stanford University Press

  • van Niel CB (1949). The comparative biochemistry of photosynthesis. In: Franck J & Loomis WE (Eds) Photosynthesis in Plants (pp 437–495). Iowa State College Press

  • Veizer J (1988a) The earth and its life: systems perspective. Origins of Life and Evolution of the Biosphère 15: 13–39

    Google Scholar 

  • Veizer J (1988b) The evolving exogenic cycle. In: Garrels RM, Gregor CB, Mackenzie FT & Maynard JB (Eds) Chemical Cycles in the Evolution of the Earth (pp 175–262). Wiley, New York

    Google Scholar 

  • Vernadsky VI (1924) La Géochimie. Alcan, Paris

    Google Scholar 

  • Vernadsky VI (1926) Biosfera. Leningrad. Seen in abridged English translation, Synergetic Press, Oracle, Arizona (1986), also available in a complete French translation, La Biosphère, by the author, Alcan, Paris (1929)

  • Vernadsky VI (1945) The biosphere and the noösphere. American Scientist 33: 1–12

    Google Scholar 

  • Vinogradov AP (1953) The Elementary Chemical Composition of Marine Organisms. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut. Translated by Efron J & Setlow JK from the Russian in the Travaux du Laboratoire Biogéochimique de l'Académie des Sciences de l'URSS, 1935, 1937 and 1944

  • Viro PJ (1953) Loss of nutrients and the natural nutrient balance of the soil in Finland. Communicationes Instituti Forestalia Fennica. Number 42.1, 50 pp

  • Vitousek PM, Ehrlich PR, Ehrlich AH & Matson PA (1986) Human appropriation of the products of photosynthesis. BioScience 36: 368–373

    Google Scholar 

  • Wächterhäuser G (1988a) Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology 10: 207–210

    Google Scholar 

  • Wächterhäuser G (1988b) Before enzymes and templates: theory of surface metabolism. Microbiological Reviews 52: 452–484

    Google Scholar 

  • Waksman SA & Starkey RL (1931) The Soil and the Microbe. Wiley, New York

    Google Scholar 

  • Wald G (1958) Preface (pp v-ix) to reissue of Henderson LJ (1913) The Fitness of the Environment. Beacon Press, Boston, Massachusetts

    Google Scholar 

  • Walker JCG, Hayes PB & Kasting JF (1981) A negative feedback mechanism for the longterm stabilization of earth's surface temperature. Journal of Geophysical Research 86: 9776–9782

    Google Scholar 

  • Wang EC, Young YL, Lacis AA, Mo T & Hansen JE (1976) Greenhouse effects due to man-made perturbations of trace gases. Science 194: 685–690

    Google Scholar 

  • Warington R (1851) Notice of observation on the adjustment of the relations between animal and vegetable kingdoms, by which the vital functions of both are maintained. Quarterly Journal of the Chemical Society 3: 52–54

    Google Scholar 

  • Warington R. (1891) On nitrification. Part IV. Journal of the Chemical Society of London 59: 484–529

    Google Scholar 

  • Whewell W (1834) Astronomy and General Physics Considered with Reference to Natural Theology, fourth edition. Bridgewater Treatises, volume 3. Pickering, London

  • Wilson PW (1940) The Biochemistry of Symbiotic Nitrogen Fixation. University of Wisconsin Press

  • Winogradsky S (1887) Zur Morphologic und Physiologic der Schwefelbakterien. Botanische Zeitung 45: 489–507, 513–523, 529–539, 545–559, 569–576, 585–594, and 606–610

    Google Scholar 

  • Winogradsky S (1889) Recherches physiologiques sur les sulfobactéries. Annales de l'Intitute Pasteur 3: 49–60. Seen in translation by Brock (1961)

    Google Scholar 

  • Winogradsky S. (1890) Sur les organismes de la nitrification. Comptes Rendus de l'Académie des Sciences 110: 1013–1016. Seen in translation by Brock (1961)

    Google Scholar 

  • Winogradsky S (1891) Recherches sur les organismes de la nitrification, Part 5. Annales de l'Institute Pasteur 5: 577–616

    Google Scholar 

  • Winogradsky S (1893) Sur l'assimilation de l'azote gazeux de l'atmosphére par les microbes. Comptes Rendus de l'Académie des Sciences 116: 1385–1388 and 118: 353–355

    Google Scholar 

  • Winogradsky S (1949) Principes de la microbiologie oecologique, une synthèse, 1945. In: Winogradsky S, Microbiologie du Sol (pp 839–848). S. Masson, Paris

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183: 1049–1052

    Google Scholar 

  • Woodward J (1699) Some thoughts and experiments concerning vegetation. Philosophical Transactions of the Royal Society of London 21: 193–227

    Google Scholar 

  • Zavarzin GA (1989) Sergei N. Winogradsky and the discovery of chemosynthesis. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 17–32). Springer-Verlag, Berlin

    Google Scholar 

  • Zhao M & Bada JL (1989) Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339: 463–465

    Google Scholar 

  • Zobell CE (1946) Marine Microbiology. Chronica Botanica, Waltham, Massachusetts

    Google Scholar 

  • Züllig H (1956) Sedimente als Ausdruck des Zustandes eines Gewässers. Schweizerische Zeitschrift für Hydrologic 18: 5–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorham, E. Biogeochemistry: its origins and development. Biogeochemistry 13, 199–239 (1991). https://doi.org/10.1007/BF00002942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002942

Key words

Navigation