Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 2))

Abstract

Roots of trees of boreal, temperate and some tropical forests form symbiotic structures with 5000–6000 species of fungi belonging to the asco- and basidiomycetes. These structures are called ectomycorrhizas. The high diversity of fungal partners allows for improved foraging and mobilisation of various forms of nitrogen and phosphorus from organic soil layers. In this review current knowledge on the physiology, biochemistry and the molecular biology of this symbiosis is summarized. Special emphasis is given to the role of host derived carbohydrates on the regulation of the symbiotic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnebrandt K and Söderström B (1992) Effects of different fertilizer treatments on ectomycorrhizal colonisation potential in two Scots pine forests in Sweden. Forest Ecology and Management 53: 77–89.

    Article  Google Scholar 

  • Bledsoe CS and Zasoski R J (1983) Effects of ammonium and nitrate on growth and nitrogen uptake by mycorrhizal Douglas-fir seedlings, Plant and Soil 71: 445–54.

    Article  CAS  Google Scholar 

  • Botton B and Dell B (1994) Expression of glutamate dehydrogenase and aspartate aminotransferase in eucalypt ectomycorrhizas. New Phytol 126: 249–257.

    Article  CAS  Google Scholar 

  • Chalot M and Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22: 21–44.

    Article  PubMed  CAS  Google Scholar 

  • Chalot M, Brun A, Botton B and Söderström B (1996) Kinetics, energetics and specificity of the general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiol 142: 1749–1756.

    Article  CAS  Google Scholar 

  • Champigny M-L (1995) Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynthesis Res 46: 117–127.

    Article  CAS  Google Scholar 

  • Dickinson JR (1999) Nitrogen metabolism. In: The metabolism and molecular physiology of Saccharomyces cerevisiae ( Dickinson JR, Schweizer M, eds.) pp. 57–77, Taylor and Francis, UK

    Google Scholar 

  • Finlay RD, Ek H, Odham G and Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi, New Phytol 110: 59–66.

    Article  Google Scholar 

  • France RC and Reid CPP (1983) Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Can J Bot 61: 964–984.

    Article  CAS  Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47: 370–375.

    Article  Google Scholar 

  • Graham IA, Denby KJ and Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 9: 1825–1841.

    Google Scholar 

  • Halford NG, Purcell PC and Hardie DG (1999) Is hexokinase really a sugar sensor in plants? Trends Plant Sci. 4: 117–120.

    Article  PubMed  Google Scholar 

  • Hampp R, Nehls U and Wallenda T (2000a) Physiology of mycorrhiza. Progress in Botany, Vol. 61, pp. 223–254.

    CAS  Google Scholar 

  • Hampp R, Shi L, Guttenberger M, Nehls U (2000b) Mykorrhizierung und Stresstoleranz von Ökotypen der Buche (Fagus sylvatica) L.): “Conventwaldprojekt”. FZKA/PEF-Berichte http://bwplus.fzk.de/pef/diskpef00/hampp/hampp.htm.

    Google Scholar 

  • Hampp R, Schaeffer C (1999) Mycorrhiza — Carbohydrate and energy metabolism. In: Mycorrhiza: Structure, function, molecular biology and biotechnology, Varma A and Hock B (eds). pp 273–303.

    Google Scholar 

  • Hoffmann E, Wallenda T, Schaeffer C and Hampp R (1997) Cyclic AMP, a possible regulator of glycolysis in the ectomycorrhizal fungus Amanita muscaria. New Phytol 137: 351–356.

    Article  CAS  Google Scholar 

  • Ineichen K, Wiemken V and Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environm 18: 703–707.

    Article  Google Scholar 

  • Ingestad T, Arveby AS and Kähr M (1986) The influence of ectomycorrhiza on nitrogen nutrition and growth of Pinus sylvestris seedlings. Physiol. Plant 68: 575–582.

    Article  Google Scholar 

  • Jang J-C, Sheen J (1997) Sugar sensing in higher plants. Science 2: 208–214.

    Google Scholar 

  • Johnston M (1999) Feasting fasting and fermenting. Trends Genet 15: 29–33.

    Article  PubMed  CAS  Google Scholar 

  • Keeney DR (1980) Prediction of soil nitrogen availability in forest ecosystems: a literature review. Forest Sci 26: 159–171.

    Google Scholar 

  • Kytöviita M-M, Pelloux J, Fontaine V, Botton B and Dizengremel P (1999) Elevated CO2 does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Plant 106: 370–377.

    Article  Google Scholar 

  • Lewis JD and Strain BR (1996) The role of mycorrhizas in the response of Pinus taeda seedlings to elevated CO2. New Phytol 133: 431–443.

    Article  Google Scholar 

  • Loewe A, Einig W, Shi L, Dizengremel P and Hampp R (2000) Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145: 565–574.

    Article  CAS  Google Scholar 

  • Lorillou S, Botton B and Martin F (1996) Nitrogen source regulates the biosynthesis of NADPglutamate dehydrogenase in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 132: 289–296.

    Article  CAS  Google Scholar 

  • Marmeisse R, Jargeat P, Wagner F, Gay G and Debaud JC (1998) Isolation and characterization of nitrate reductase deficient mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum. New Phytol 140: 311–318.

    Article  CAS  Google Scholar 

  • Martin F and Botton B (1993) Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Adv Plant Path 9: 83–102.

    Google Scholar 

  • Melin E and Nilsson H (1952) Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk Botanisk Tidskrift 46: 281–285.

    CAS  Google Scholar 

  • Nehls U, Ecke M and Hampp R (1999a) Sugar and nitrogen-dependent regulation of an Amanita muscaria phenylalanine ammonium lyase gene. JBacteriol 181: 1931–1933.

    CAS  Google Scholar 

  • Nehls U, Kleber R, Wiese J and Hampp R (1999b) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 144: 343–349.

    Article  CAS  Google Scholar 

  • Nehls U, Wiese A and Hampp R (2000) Exchange of carbohydrates between symbionts in ectomycorrhiza. In: The Mycota, Vol. IX, Hock B (ed.). Springer-Verlag, in press.

    Google Scholar 

  • Nehls U, Wiese A, Guttenberger M and Hampp R (1998) Carbon allocation in ectomycorrhiza: identification and expression analysis of an A. muscaria monosaccharide transporter. Molec Plant Microb Im 11: 167–176.

    CAS  Google Scholar 

  • Norby RJ, O’Neill EG, Hood, WG and Luxmore RBJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3: 203–210.

    Article  PubMed  Google Scholar 

  • Plassard C, Scheromm P and Llamas H (1986) Nitrate assimilation by maritime pine and ectomycorrhizal fungi in pure culture. In: Gianinazzi-Pearson V and Gianinazzi S (eds). Physiological and genetical aspects of mycorrhizae. pp 383–388. INRA, Paris, France.

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems Experientia 47: 376–391.

    Article  Google Scholar 

  • Read DJ, Leake JR and Langdale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant R and Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. pp. 181–204. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rygiewicz PT, Bledsoe CS and Zasoski RJ (1984) Effects of ectomycorrhizae and solution pH on [1SN]ammonium uptake by coniferous seedlings. Canadian J Forest Research 14: 885–892.

    Article  CAS  Google Scholar 

  • Sheen J, Zhou Li, Jang J-C (1999) Sugars as signalling molecules. Current Opinion in Plant Biology 2: 410–418.

    Article  PubMed  CAS  Google Scholar 

  • Smith SE and Read DJ (eds) (1997) Mycorrhizal Symbiosis, 2nd Edition. Academic Press, San Diego.

    Google Scholar 

  • Turnau K, Berger A, Loewe A, Einig W, Hampp R, Chalot M, Dizengremel P and Kottke I (2000) CO2 concentration and nitrogen input affect the C and N storage pools in Amanita muscaria IPicea abies mycorrhizas. Tree Physiol, in press.

    Google Scholar 

  • Wainwright M (1993) Oligotrophic growth of fungi–stress or natural state. In: Jennings DJ (ed) Stress tolerance of fungi. pp 127–144, Marcel Dekker, New York.

    Google Scholar 

  • Wallander H and Nylund JE (1991) Effects of excess nitrogen on carbohydrate concentration and mycorrhizal development of Pinus sylvestris L. seedlings. New Phytol 119: 405–411.

    Article  CAS  Google Scholar 

  • Wallenda T, Schaeffer C, Einig W, WinglerA, Hampp R, Seith B, George E and Marschner H (1996) Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.) Plant Soil 186: 361–369.

    CAS  Google Scholar 

  • Wiese J, Kleber R, Hampp R and Nehls U (2000) Functional characterization of the Amanita muscaria monosaccharide transporter AmMstl. Plant Biol 2: 278–282.

    Article  CAS  Google Scholar 

  • Wiklund K, Nilsson L-O and Jacobsson S (1995) Effect of irrigation, fertilization and artificial drought on basidioma production in a Norway spruce stand. Can J Bot 73: 200–208.

    Article  Google Scholar 

  • WinglerA, Einig W, Schaeffer C, Wallenda T, Hampp R, Wallander H and Nylund J-E (1994) Influence of different nutrient regimes on the regulation of carbon metabolism in Norway spruce (Picea abies [L.] Karst.) seedlings. New Phytol 128: 323–330.

    Article  Google Scholar 

  • Wisser G, Guttenberger M, Hampp R and Nehls U (2000) Identification and characterization of an extracellular acid trehalase from the ectomycorrhizal fungus Amanita muscaria. New Phytol, 146: 169–175.

    Article  CAS  Google Scholar 

  • Wright DP, Scholes JD, Read DJ and Rolfe SA (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant, Cell and Environment 23: 39–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hampp, R., Nehls, U. (2001). Physiology of Tree Root/Fungus Symbiosis. In: Huttunen, S., Heikkilä, H., Bucher, J., Sundberg, B., Jarvis, P., Matyssek, R. (eds) Trends in European Forest Tree Physiology Research. Tree Physiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9803-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9803-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5829-4

  • Online ISBN: 978-94-015-9803-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics