Skip to main content

Variation and Fidelity: The Evolution of Simple Sequence Repeats as Functional Elements in Adjustable Genes

  • Chapter
Book cover Evolutionary Theory and Processes: Modern Perspectives

Abstract

The functional properties of simple sequence repeats (SSRs) support an expanded understanding of evolution’s effect on mutability. These DNA tracts are characterized by high rates of gain or loss in the number of tandem repetitions of a short DNA motif. Such mutations are remarkable for being frequent, site-specific and readily reversible. Furthermore, many SSRs are functionally integrated into the genome, so that such changes in tract length can exert a quantitative regulatory effect on gene transcription activity. Although the characteristic mutability of SSRs increases the site-specific rate of mutation, the quantitative effect minimizes the probability of significantly deleterious outcome. Such mutable sites can thus create a favorable balance between the costs and the benefits of mutability.

SSR alleles which undergo changes in length can nevertheless retain their characteristic mutability. Consequently, selection for favorable alleles will indirectly select the mutability function by which those alleles arose. Conversely, SSR alleles can undergo site specific modification of their mutability, for example by mutation which alters the purity of motif repetition, while retaining their characteristic effect on phenotype and fitness. Indirect selection can thereby shape the degree of mutability for any gene that includes a functional SSR.

Genes associated with SSRs may be favored by indirect selection whenever quantitative variation in the affected traits can provide a population with genetic resiliency for adaptation, especially in fluctuating or heterogeneous environments. Such “adjustable genes” may provide a prolific and evolutionarily significant source of quantitative genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, W., S. J. Sawcer, R. W. Feakes, and D. C. Rubinstein. 1996. Microsatellites show mutational bias and heterozygote instability. Nature Genetics 13: 390–391.

    Article  PubMed  CAS  Google Scholar 

  • Arber, W. 1995. The generation of variation in bacterial genomes. Journal of Molecular Evolution 40: 7–12.

    Article  CAS  Google Scholar 

  • Barton, N.H. 1990. Pleiotropic models of quantitative variation. Genetics 124: 773–782.

    PubMed  CAS  Google Scholar 

  • Benzer, S. 1962. The fine structure of the gene. Scientific American 206: 70–84.

    PubMed  CAS  Google Scholar 

  • Borst, P., and D. R. Greaves. 1987. Programmed gene rearrangements altering gene expression. Science 235: 658–667.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, J. H. 1985a. An organizational interpretation of evolution, in D. J. Depew and B. H. Weber, eds, Evolution at a Crossroads: The New Biology and the New Philosophy of Science. MIT Press, Cambridge, Massachusetts, pp. 133–167.

    Google Scholar 

  • Compbell, J.H. 1985b. The new gene and its evolution, in K. S. W. Campbell, and M. F. Day, eds. Rates of Evolution. Allen and Unwin, London, pp. 283–309.

    Google Scholar 

  • Cascalho, M., J. Wong, C. Steinberg, and M. Wabl. 1998. Mismatch repair co-opted by hypermutation. Science 279: 1207–1210.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski, and W. Stephan. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. 1983. Adaptability: The Significance of Variability from Molecule to Ecosystem. Plenum Press, New York.

    Book  Google Scholar 

  • Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. John Murray, London. Facsimile edition by Harvard University Press, Cambridge, Massachusetts, 1964.

    Google Scholar 

  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics, 4th edition. Longman Group Ltd., Harlow, Essex.

    Google Scholar 

  • Field, D., and C. Wills. 1996. Long, polymorphic microsatellites in simple organisms. Proceedings of the Royal Society London B 263: 209–215.

    Article  CAS  Google Scholar 

  • Foster, P. L., and J. M. Trimarchi. 1994. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science 265: 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Futuyma, D. J. 1998. Evolutionary Biology, 3rd edition. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Gerhart, J., and M. Kirschner. 1997. Cells, Embryos, and Evolution. Blackwell Science, Maiden, Massachusetts.

    Google Scholar 

  • Gerber, H.-P., K. Seipel, O. Georgiev, M. Hoefferer, M. Hug, S. Rusconi, and W. Schaflher. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263: 808–811.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R.R. 1996. Molecular population genetics of adaptation. In M. R. Rose and G. V. Lauder, eds, Adaptation Academic Press, San Diego, pp. 291–309.

    Google Scholar 

  • Jarne, P., and P. J. L. Lagoda. 1996. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution 11: 424–429.

    Article  PubMed  CAS  Google Scholar 

  • Jeme, N. K. 1985. The generative grammar of the immune system. Science 229: 1057–1059.

    Article  Google Scholar 

  • Jurka, J., and C. Pethiyagoda. 1995. Simple repetitive DNA sequences from primates: compilation and analysis. Journal of Molecular Evolution 40: 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Kashi, Y., D. G. King, and M. Soller. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics 13: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Kashi, Y., and M. Soller. 1998. Functional roles of microsatellites and minisatellites. In D. B. Goldstein, and C. Schlotterer, eds, Microsatellite Evolution and Applications, Oxford University Press, Oxford, (in press).

    Google Scholar 

  • King, D. G. 1985. Metaptation: A descriptive category for evolutionarily versatile patterns of genetic and ontogenetic organization. Evolutionary Theory 7: 222.

    Google Scholar 

  • King, D. G., M. Soller, and Y. Kashi. 1997. Evolutionary tuning knobs. Endeavor 21: 36–40.

    Article  Google Scholar 

  • King, D. G. 1999. Modelling selection for adjustable genes based on simple sequence repeats. Proceedings of a Conference on Molecular Strategies of Biological Evolution, Annals of the New York Academy of Sciences, (in press).

    Google Scholar 

  • Kirzhner, V. M., A. B. Korol, and E. Nevo. 1996. Complex dynamics of multilocus systems subjected to cyclical selection. Proceedings of the National Academy of Sciences of the U.S.A. 93: 6532–6535.

    Article  CAS  Google Scholar 

  • Künzler, P., K. Matsuo, and W. Schaffner. 1995. Pathological, physiological, and evolutionary aspects of short unstable DNA repeats in the human genome. Biological Chemistry, Hoppe-Seyler 376: 201–211.

    Article  Google Scholar 

  • Lande, R. 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genetical Research 26: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, Jr., E. G. 1973. The evolution of mutation rates. Genetics Supplement 73: 1–18.

    Google Scholar 

  • Levins, R. 1967. Theory of fitness in a heterogeneous environment. VI. The adaptive significance of mutation. Genetics 56: 163–178.

    PubMed  CAS  Google Scholar 

  • Levins, R. 1968. Evolution in Changing Environments, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Lynch, M. 1988. The rate of polygenic mutation. Genetical Research 51: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Magnasco, M. O., and D. S. Thaler. 1996. Changing the pace of evolution. Physics Letters A 221: 287–292.

    Article  CAS  Google Scholar 

  • Maynard-Smith, J. 1989. Evolutionary Genetics. Oxford University Press, Oxford.

    Google Scholar 

  • Mayr, E. 1982. The Growth of Biological Thought. Harvard University Press. Cambridge, Massachusetts.

    Google Scholar 

  • Moxon, E. R., P. B. Rainey, M. A. Nowak, and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Current Biology 4: 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Moxon, E. R., and D. S. Thaler. 1997. The tinkerer’s evolving toolbox. Nature 387: 659–662.

    Article  PubMed  CAS  Google Scholar 

  • Nevo, E., V. Kirzhner, A. Beiles, and A. Korol. 1997. Selection versus random drift: long-term polymorphism persistence in small populations (evidence and modelling). Philosophical Transactions of the Royal Society London B 352: 381–389.

    Article  Google Scholar 

  • Otto, S. P., and Y. Michalakis. 1998. The evolution of recombination in changing environments. Trends in Ecology and Evolution 13: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Primmer, C. R., H. Ellegren, N. Saino, and A. P. Moller. 1996. Directional evolution in germline microsatellite mutations. Nature Genetics 13: 391–393.

    Article  PubMed  CAS  Google Scholar 

  • Queller, D. C., J. E. Strassmann, and C. R. Hughes. 1993. Microsatellites and kinship. Trends in Ecology and Evolution 8: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Richards, R. I., and G. R. Sutherland. 1994. Simple repeat DNA is not replicated simply. Nature Genetics 6: 114–116.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S. M., S. Longerich, P. Gee, and R. S. Harris. 1994. Adaptive mutation by deletions in small mononucleotide repeats. Science 265: 405–407.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, L. A., J. M. Hennessy, A. A. Peixoto, E. Rosato, H. Parkinson, R. Costa, and C. P. Kyriacou. 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science 278: 2117–2120.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J. A. 1983. Variation as a genetic engineering process. In D.S. Bendall, ed., Evolution from Molecules to Men. Cambridge University Press, Cambridge, pp. 253–270.

    Google Scholar 

  • Shapiro, J. A. 1997. Genome organization, natural genetic engineering and adaptive mutation. Trends in Genetics 13: 98–104.

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski, P. D. 1995. The origin of adaptive mutants: random or nonrandom? Journal of Molecular Evolution 40: 94–101.

    Article  CAS  Google Scholar 

  • Sniegowski, P. D., P. J. Gerrish, and R. E. Lenski. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703–705.

    Article  PubMed  CAS  Google Scholar 

  • Sober, E. 1984. The Nature of Selection. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Sturtevant, A. H. 1937. Essays on evolution. I. On the effects of selection on mutation rate. Quarterly Review of Biology 12: 464–467.

    Article  Google Scholar 

  • Tautz, D., and C. Schlotterer. 1994. Simple sequences. Current Opinion in Genetics and Development 4: 832–837.

    Article  PubMed  CAS  Google Scholar 

  • Taddei, F., M. Radman, J. Maynard Smith, B. Toupance, P. H. Gouyon, and B. Godelle. 1997. Role of mutator alleles in adaptive evolution. Nature 387: 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, D. S. 1994. The evolution of genetic intelligence. Science 264: 224–225.

    Article  PubMed  CAS  Google Scholar 

  • Trifonov, E. N. 1989. The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology 51: 417–432.

    PubMed  CAS  Google Scholar 

  • Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1: 1–30.

    Google Scholar 

  • Waxman, D., and J. R. Peck. 1998. Pleiotropy and the preservation of perfection. Science 279: 1210–1213.

    Article  CAS  Google Scholar 

  • Wagner, G. P., and L. Altenberg. 1996. Complex adaptations and the evolution of evolvability. Evolution 50: 967–976.

    Article  Google Scholar 

  • Weber, M. 1996. Evolutionary plasticity in prokaryotes: A Panglossian view. Biology and Philosophy 11: 67–88.

    Article  Google Scholar 

  • Weber, M., M. Blot, and W. Arber. 1995. On the origin of genetic diversity. Gaia 4: 191–198.

    Google Scholar 

  • Williams, G. C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Wills, C. 1989. Wisdom of the Genes The. Basic Books, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

King, D.G., Soller, M. (1999). Variation and Fidelity: The Evolution of Simple Sequence Repeats as Functional Elements in Adjustable Genes. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Perspectives. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4830-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4830-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6025-7

  • Online ISBN: 978-94-011-4830-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics