Skip to main content

Deformations of Nonassociative Algebras and Integrable Differential Equations

  • Chapter

Abstract

A new class of nonassociative algebras related to integrable PDE’s and ODE’s is introduced. These algebras can be regarded as a noncommutative generalization of Jordan algebras. Their deformations are investigated. Relationships between such algebras and graded Lie algebras are established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Svinolupov, S. I.: On the analogues of the Burgers equations, Phys. Lett. A 135 (1) (1989), 32–36.

    Article  MathSciNet  Google Scholar 

  2. Svinolupov, S. I.: Jordan algebras and generalized Korteweg-de Vries equations, Teoret. Mat. Phys. 4 (1991), 46–58 (in Russian).

    MathSciNet  Google Scholar 

  3. Svinolupov, S. I.: Generalized Schrodinger equations and Jordan pairs, Comm. Math. Phys. 143 (1992), 559–575.

    Article  MathSciNet  MATH  Google Scholar 

  4. Svinolupov, S. I. and Sokolov, V. V.: Jordan tops and generalization of Lie theorem, Mat. Zametki 3 (1993), 115–121 (in Russian).

    Google Scholar 

  5. Golubchik, I. Z., Sokolov, V. V., and Svinolupov, S. I.: New class of nonassociative algebras and a generalized factorization method, Preprint ESI, Vienna 53, 1993

    Google Scholar 

  6. Calogero, F.: Why are certain nonlinear PDE’s both widely applicable and integrable? in V. E. Zakharov (ed.), What is Integrabilityl Springer-Verlag, Berlin, 1991, pp. 1–62.

    Google Scholar 

  7. Jacobson, N.: Structure and Representations of Jordan Algebras Amer. Math. Soc. Colloq. Pubi. 30, Amer. Math. Soc, Providence R.I., 1968.

    Google Scholar 

  8. Medina, A.: Sur quelques algebres symetriques a gauche dont l’algebre de Lie sous-jacente est resoluble, C. R. Acad. Sci. Paris. Ser. A. 286 (3) (1978), 173–176

    MathSciNet  MATH  Google Scholar 

  9. Athorn, C. and Fordy, A. P.: Generalized KdV and MKdV equations associated with symmetric spaces, J. Phys. A 20 (1987), 1377–1386.

    Article  MathSciNet  Google Scholar 

  10. Svinolupov, S. I. and Sokolov, V. V: Vector generalizations of classical integrable equations, Teoret. Mat. Fiz. 100(2) (1994), 214-218 (in Russian).

    Google Scholar 

  11. Zhevlakov, K. A., Slin’ko, A. M., Shestakov, I. P., and Shirshov, A.I.:A Rings Similar to Associative Ones, Nauka, Moscow, 1974 (in Russian).

    Google Scholar 

  12. Osborn, J. M.: Commutative algebras satisfying an identity of degree four, Proc. Amer. Math. Soc. 16 (4) (1965), 1114–1120.

    Article  MathSciNet  MATH  Google Scholar 

  13. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    MATH  Google Scholar 

  14. Meyberg, K.: Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren, Math. Zeit. 115 (1) (1970), 58–78.

    Article  MathSciNet  MATH  Google Scholar 

  15. Koecher, M. : Imbedding of Jordan algebras into Lie algebras, 1, Amer. J. Math. 89 (1967), 787–816.

    Article  MathSciNet  MATH  Google Scholar 

  16. Koecher, M. : Imbedding of Jordan algebras into Lie algebras, 2, Amer. J. Math. 90 (1968) 476–510.

    Article  MathSciNet  MATH  Google Scholar 

  17. Drinfel’d, V. G. : Hamiltonian structure on the Lie groups and a geometric sense of classical Yang-Baxter equation, Dokl. Acad. Nauk SSSR 268(2) (1983), 285–287 (in Russian).

    MathSciNet  Google Scholar 

  18. Semenov-Tian-Shansky, M. A.: What is classical r-matrix? Funkt. Anal. Prilozh. 17(4) (1983), 17–33 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sokolov, V.V., Svinolupov, S.I. (1995). Deformations of Nonassociative Algebras and Integrable Differential Equations. In: Kersten, P.H.M., Krasil’Shchik, I.S. (eds) Geometric and Algebraic Structures in Differential Equations. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0179-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0179-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6565-8

  • Online ISBN: 978-94-009-0179-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics