Skip to main content

Mathematical Modeling of microRNA–Mediated Mechanisms of Translation Repression

  • Chapter
  • First Online:
Book cover MicroRNA Cancer Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

MicroRNAs can affect the protein translation using nine mechanistically different mechanisms, including repression of initiation and degradation of the transcript. There is a hot debate in the current literature about which mechanism and in which situations has a dominant role in living cells. The worst, same experimental systems dealing with the same pairs of mRNA and miRNA can provide ambiguous evidences about which is the actual mechanism of translation repression observed in the experiment. We start with reviewing the current knowledge of various mechanisms of miRNA action and suggest that mathematical modeling can help resolving some of the controversial interpretations. We describe three simple mathematical models of miRNA translation that can be used as tools in interpreting the experimental data on the dynamics of protein synthesis. The most complex model developed by us includes all known mechanisms of miRNA action. It allowed us to study possible dynamical patterns corresponding to different miRNA-mediated mechanisms of translation repression and to suggest concrete recipes on determining the dominant mechanism of miRNA action in the form of kinetic signatures. Using computational experiments and systematizing existing evidences from the literature, we justify a hypothesis about co-existence of distinct miRNA-mediated mechanisms of translation repression. The actually observed mechanism will be that acting on or changing the sensitive parameters of the translation process. The limiting place can vary from one experimental setting to another. This model explains the majority of existing controversies reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  CAS  PubMed  Google Scholar 

  4. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  5. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  CAS  PubMed  Google Scholar 

  6. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  7. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007:re1

    PubMed  Google Scholar 

  9. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  CAS  PubMed  Google Scholar 

  10. Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pillai RS, Artus CG, Filipowicz W (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10:1518–1525

    Article  CAS  PubMed  Google Scholar 

  12. Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14:1480–1491

    Article  CAS  PubMed  Google Scholar 

  13. Zinovyev A, Morozova N, Nonne N, Barillot E, Harel-Bellan A, Gorban AN (2010) Dynamical modelling of microRNA action on the protein translation process. BMC Syst Biol 4:13

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gorban AN, Zinovyev A, Morozova N, Harel-Bellan A (2012) Modeling coupled transcription, translation and degradation and miRNA-based regulation of this process. E-print arXiv:1204.5941

    Google Scholar 

  15. Morozova N, Zinovyev A, Nonne N, Pritchard L-L, Gorban AN, Harel-Bellan A (2012) Kinetic signatures of microRNA modes of action. RNA 18(9):032284

    Google Scholar 

  16. Schwarz G (1968) Kinetic analysis by chemical relaxation methods. Rev Mod Phys 40:206–218

    Article  CAS  Google Scholar 

  17. Hammes GG (1968) Relaxation spectrometry of enzymatic reactions. Accounts Chem Res 1(11):321–329

    Article  CAS  Google Scholar 

  18. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  CAS  PubMed  Google Scholar 

  19. Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966

    Article  CAS  PubMed  Google Scholar 

  20. Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151

    Article  CAS  PubMed  Google Scholar 

  21. Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447:875–878

    Article  CAS  PubMed  Google Scholar 

  22. Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W (2009) Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15(5):781–793

    Article  CAS  PubMed  Google Scholar 

  23. Eulalio A, Huntzinger E, Izaurralde E (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15:346–353

    Article  CAS  PubMed  Google Scholar 

  24. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    Article  CAS  PubMed  Google Scholar 

  25. Wang B, Yanez A, Novina CD (2008) MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci USA 105:5343–5348

    Article  CAS  PubMed  Google Scholar 

  26. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhab­ditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  CAS  PubMed  Google Scholar 

  27. Gu S, Jin L, Zhang F, Sarnow P, Kay MA (2009) Biological basis for restriction of microRNA targets to the 3’ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596

    Article  CAS  PubMed  Google Scholar 

  29. Maroney PA, Yu Y, Fisher J, Nilsen TW (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  30. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542

    Article  CAS  PubMed  Google Scholar 

  31. Baillat D, Shiekhattar R (2009) Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 29:4144–4155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C, Prats H (2009) The VEGF IRESes are differentially susceptible to translation inhibition by miR-16. RNA 15:249–254

    Article  CAS  PubMed  Google Scholar 

  33. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’UTR as in the 3’UTR. Proc Natl Acad Sci USA 104:9667–9672

    Article  CAS  PubMed  Google Scholar 

  34. Wang B, Love TM, Call ME, Doench JG, Novina CD (2006) Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 22:553–560

    Article  CAS  PubMed  Google Scholar 

  35. Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    Article  CAS  PubMed  Google Scholar 

  36. Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636

    Article  CAS  PubMed  Google Scholar 

  37. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    Article  CAS  PubMed  Google Scholar 

  38. Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC, Fritzler MJ, Chan EK (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  PubMed  Google Scholar 

  39. Leung AK, Calabrese JM, Sharp PA (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci USA 103:18125–18130

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    Article  PubMed Central  PubMed  Google Scholar 

  41. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pauley KM, Eystathioy T, Jakymiw A, Hamel JC, Fritzler MJ, Chan EK (2006) Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep 7(9):904–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Leung AK, Sharp PA (2006) microRNAs: a safeguard against turmoil? Cell 130:581–585

    Article  Google Scholar 

  45. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  46. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  CAS  PubMed  Google Scholar 

  48. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4: NOT deadenylase and DCP1: DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  CAS  PubMed  Google Scholar 

  49. Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570

    Article  CAS  PubMed  Google Scholar 

  50. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  CAS  PubMed  Google Scholar 

  51. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  52. Wakiyama M, Takimoto K, Ohara O, Yokoyama S (2007) let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862

    Article  CAS  PubMed  Google Scholar 

  53. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    Article  CAS  PubMed  Google Scholar 

  54. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  55. Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890

    Article  CAS  PubMed  Google Scholar 

  56. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056

    Article  CAS  PubMed  Google Scholar 

  57. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  PubMed  Google Scholar 

  58. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  PubMed  Google Scholar 

  59. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  60. Aleman LM, Doench J, Sharp PA (2007) Comparison of siRNA-induced off-target RNA and protein effects. RNA 13:385–395

    Article  CAS  PubMed  Google Scholar 

  61. Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305(5688):1289–92

    Article  CAS  PubMed  Google Scholar 

  62. Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235

    Article  CAS  PubMed  Google Scholar 

  63. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  CAS  PubMed  Google Scholar 

  64. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen ZX, Riggs AD, Rossi JJ, Morris KV (2006) The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12(2):256–62

    Article  CAS  PubMed  Google Scholar 

  65. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  66. Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kinch LN, Grishin NV (2009) The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Biol Direct 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  68. Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL, Meijer HA, Dobbyn HC, Stoneley M, Spriggs KA et al (2008) The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci USA 105:8866–8871

    Article  CAS  PubMed  Google Scholar 

  69. Kozak M (2008) Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 423(2):108–115

    Article  CAS  PubMed  Google Scholar 

  70. Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317:1764–1767

    Article  CAS  PubMed  Google Scholar 

  71. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  CAS  PubMed  Google Scholar 

  72. Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21(16):1975–1982

    Article  CAS  PubMed  Google Scholar 

  73. Gorban AN, Radulescu O (2008) Dynamic and static limitation in Multiscale reaction networks, Revisited. Adv Chem Eng 34:103–173, E-print arXiv:physics/0703278 [physics.chem-ph]

    Article  CAS  Google Scholar 

  74. Radulescu O, Gorban AN, Zinovyev A, Lilienbaum A (2008) Robust simplifications of multiscale biochemical networks. BMC Syst Biol 2:86

    Article  PubMed Central  PubMed  Google Scholar 

  75. Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco M, Darnell JE Jr (2003) Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 13:1863–1872

    CAS  PubMed  Google Scholar 

  76. Bergmann JE, Lodish HF (1979) A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control. J Biol Chem 254:11927–11937

    CAS  PubMed  Google Scholar 

  77. Hunt T, Hunter T, Munro A (1969) Control of haemoglobin synthesis: rate of translation of the messenger RNA for the alpha and beta chains. J Mol Biol 43:123–133

    Article  CAS  PubMed  Google Scholar 

  78. Scornik OA (1974) In vivo rate of translation by ribosomes of normal and regenerating liver. J Biol Chem 249:3876–3883

    CAS  PubMed  Google Scholar 

  79. Gilchrist MA, Wagner A (2006) A model of protein translation including codon bias, nonsense errors, and ribosome recycling. J Theor Biol 239:417–434

    Article  CAS  PubMed  Google Scholar 

  80. Hartl DL, Jones EW (2005) Genetics: analysis of genes and genomes, 6th edn. Jones & Bartlett Publishers, Sudbury

    Google Scholar 

  81. Gorban AN, Radulescu O, Zinovyev A (2010) Asymptotology of chemical reaction networks. Chem Eng Sci 65:2310–2324, E-print arXiv:0903.5072 [physics.chem-ph]

    Article  CAS  Google Scholar 

  82. Huang J, Liang Z, Yang B, Tian H, Ma J, Zhang H (2007) Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J Biol Chem 282:33632–33640

    Article  CAS  PubMed  Google Scholar 

  83. Jopling CL, Schütz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the Hepatitis C Virus RNA genome. Cell Host Microbe 4(1):77–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Mayr C, Bartel DP (2009) Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518

    Article  CAS  PubMed  Google Scholar 

  86. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Le Hir H, Seraphin B (2008) EJCs at the heart of translational control. Cell 133:213–216

    Article  PubMed  Google Scholar 

  88. Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700

    Article  CAS  PubMed  Google Scholar 

  89. Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the European Commission Sixth Framework Programme (Integrated Project SIROCCO, contract number LSHG-CT-2006-037900) to AHB, and from the Agence Nationale de la Recherche (project ANR-08-SYSC-003 CALAMAR) and from the Projet Incitatif Collaboratif “Bioinformatics and Biostatistics of Cancer” to Institut Curie. AZ is a member of the team “Systems Biology of Cancer”, labeled by the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Zinovyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zinovyev, A., Morozova, N., Gorban, A.N., Harel-Belan, A. (2013). Mathematical Modeling of microRNA–Mediated Mechanisms of Translation Repression. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_11

Download citation

Publish with us

Policies and ethics