Skip to main content

Seed Plant Mitochondrial Genomes: Complexity Evolving

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

Complete mitochondrial genome sequences are now available for representatives of all major clades of land plants except for the ferns (monilophytes). More than 30 chondrome sequences have been determined for flowering plants alone. Given that a well-founded understanding of land plant phylogeny has developed over the recent years, we can now confidently trace the molecular evolution of plant mitochondrial genomes with respect to their numerous interesting features: an ongoing endosymbiotic gene transfer to the nucleus, the gains, losses and occasional disruptions of introns, the acquisition of foreign DNA sequences and the emergence of the pyrimidine conversion type of RNA editing. This review attempts to put the insights from several independent studies addressing the molecular evolution of these features and our insights from the growing list of completed plant chondrome sequences into a modern phylogenetic perspective on land plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

bp:

– Base pairs;

CMS:

– Cytoplasmic male sterility;

cpDNA:

– Chloroplast DNA;

EGT:

– Endosymbiotic gene transfer (from endosymbiotic organelles to the nucleus);

HGT:

– Horizontal gene transfer;

HT:

-clade – hornwort-tracheophyte clade;

Kbp:

– Kilo base pairs (103 bp);

LGT:

– Lateral gene transfer;

Mbp:

– Mega base pairs (106 bp);

mRNA:

– Messenger RNA;

mtDNA:

– Mitochondrial DNA;

NLE:

-clade – non-liverwort embryophyte clade;

ORF:

– Open reading frame;

RCC:

– Respiratory chain complex;

rRNA:

– Ribosomal RNA;

SNP:

– Single nucleotide polymorphism;

tRNA:

– Transfer RNA

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Clements MJ, Vaughn JC (1998a) The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 46:689–696

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Song K, Qiu YL, Shirk A, Cho Y, Parkinson CL, Palmer JD (1998b) Evolution of flowering plant mitochondrial genomes: gene content, gene transfer to the nucleus, and highly accelerated mutation rates. In: Moller IM, Gardestrom P, Glimelius K, Glaser E (eds) Plant mitochondria: from gene to function. Backhuys, Leiden, pp 13–18

    Google Scholar 

  • Adams KL, Song KM, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, Palmer JD (1999) Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci USA 96:13863–13868

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Rosenblueth M, Qiu YL, Palmer JD (2001) Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. Genetics 158:1289–1300

    PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Whelan J, Palmer JD (2002a) Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Qiu YL, Stoutemyer M, Palmer JD (2002b) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA 99:9905–9912

    Article  PubMed  CAS  Google Scholar 

  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML (2008) Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 275:2385–2402

    Article  PubMed  CAS  Google Scholar 

  • Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448

    Article  PubMed  CAS  Google Scholar 

  • Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 6:e16404

    Article  PubMed  CAS  Google Scholar 

  • Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD (2011b) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23:2499–2513

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Arrieta-Montiel MP, Mackenzie SA (2011) Plant mitochondrial genomes and recombination. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 65–82

    Chapter  Google Scholar 

  • Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Bakker FT, Culham A, Pankhurst CE, Gibby M (2000) Mitochondrial and chloroplast DNA-based phylogeny of Pelargonium (Geraniaceae). Am J Bot 87:727–734

    Article  PubMed  CAS  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, Depamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riano-Pachon DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WW, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  PubMed  CAS  Google Scholar 

  • Beckert S, Steinhauser S, Muhle H, Knoop V (1999) A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst Evol 218:179–192

    Article  CAS  Google Scholar 

  • Beckert S, Muhle H, Pruchner D, Knoop V (2001) The mitochondrial nad2 gene as a novel marker locus for phylogenetic analysis of early land plants: a comparative analysis in mosses. Mol Phylogenet Evol 18:117–126

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (2007) The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. Bioessays 29:474–483

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    Article  PubMed  CAS  Google Scholar 

  • Brennicke A, Blanz P (1982) Circular mitochondrial DNA species from Oenothera with unique sequences. Mol Gen Genet 187:461–466

    Article  CAS  Google Scholar 

  • Brennicke A, Möller S, Blanz PA (1985) The 18S and 5S ribosomal RNA genes in Oenothera mitochondria: sequence rearrangements in the 18S and 5S ribosomal RNA genes of higher plants. Mol Gen Genet 198:404–410

    Article  CAS  Google Scholar 

  • Brouard JS, Otis C, Lemieux C, Turmel M (2010) The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2:240–256

    Article  PubMed  CAS  Google Scholar 

  • Brubacher-Kauffmann S, Maréchal-Drouard L, Cosset A, Dietrich A, Duchene AM (1999) Differential import of nuclear-encoded tRNA(Gly) isoacceptors into Solanum tuberosum mitochondria. Nucleic Acids Res 27:2037–2042

    Article  PubMed  CAS  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324:543–550

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Yan Y, Javadi P, Lang BF (2009) Group I intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25:381–386

    Article  PubMed  CAS  Google Scholar 

  • Chaw SM, Chun-Chieh SA, Wang D, Wu YW, Liu SM, Chou TY (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Cho YR, Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Mol Biol Evol 16:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Qiu YL, Kuhlman P, Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14244–14249

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kuck U, Bennoun P, Rochaix JD (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52:903–913

    Article  PubMed  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Cui P, Liu H, Lin Q, Ding F, Zhuo G, Hu S, Liu D, Yang W, Zhan K, Zhang A, Yu J (2009) A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. J Genet 88:299–307

    Article  PubMed  CAS  Google Scholar 

  • Cusimano N, Zhang LB, Renner SS (2008) Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol Biol Evol 25:265–276

    Article  PubMed  CAS  Google Scholar 

  • Dale RM (1981) Sequence homology among different size classes of plant mtDNAs. Proc Natl Acad Sci USA 78:4453–4457

    Article  PubMed  CAS  Google Scholar 

  • Dale RM, Wu M, Kiernan MC (1983) Analysis of four tobacco mitochondrial DNA size classes. Nucleic Acids Res 11:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Pratje E, Whelan J (2002) Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J 30:11–21

    Article  PubMed  CAS  Google Scholar 

  • Darracq A, Varré JS, Maréchal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, Oztas S, Lenoble P, Vacherie B, Barbe V, Touzet P (2011) Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol 3:723–736

    Article  CAS  Google Scholar 

  • Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc Biol Sci 272:2237–2242

    Article  PubMed  CAS  Google Scholar 

  • Delage L, Dietrich A, Cosset A, Maréchal-Drouard L (2003) In vitro import of a nuclearly encoded tRNA into mitochondria of Solanum tuberosum. Mol Cell Biol 23:4000–4012

    Article  PubMed  CAS  Google Scholar 

  • Dombrovska E, Qiu YL (2004) Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 32:246–263

    Article  PubMed  CAS  Google Scholar 

  • Duchêne AM, Pujol C, Maréchal-Drouard L (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 55:1–18

    Article  PubMed  CAS  Google Scholar 

  • Ellis J (1982) Promiscuous DNA – chloroplast genes inside plant mitochondria. Nature 299:678–679

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Kazama T, Yamada M, Toriyama K (2010) Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genomics 11:209

    Article  PubMed  CAS  Google Scholar 

  • Giegé P, Grienenberger JM, Bonnard G (2008) Cytochrome c biogenesis in mitochondria. Mitochondrion 8:61–73

    Article  PubMed  CAS  Google Scholar 

  • Glover KE, Spencer DF, Gray MW (2001) Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem 276:639–648

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  PubMed  CAS  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104

    Article  PubMed  CAS  Google Scholar 

  • Grewe F, Herres S, Viehoever P, Polsakiewicz M, Weisshaar B, Knoop V (2010) A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res 39:2890–2902

    Google Scholar 

  • Groth-Malonek M, Pruchner D, Grewe F, Knoop V (2005) Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol Biol Evol 22:117–125

    Article  PubMed  CAS  Google Scholar 

  • Groth-Malonek M, Rein T, Wilson R, Groth H, Heinrichs J, Knoop V (2007a) Different fates of two mitochondrial gene spacers in early land plant evolution. Int J Plant Sci 168:709–717

    Article  CAS  Google Scholar 

  • Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V (2007b) Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 24:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169

    Article  PubMed  CAS  Google Scholar 

  • Hao W, Richardson AO, Zheng Y, Palmer JD (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci USA 107:21576–21581

    Article  PubMed  CAS  Google Scholar 

  • Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–358

    Google Scholar 

  • Hildebrand M, Hallick RB, Passavant CW, Bourque DP (1988) Trans-splicing in chloroplasts: the rps 12 loci of Nicotiana tabacum. Proc Natl Acad Sci USA 85:372–376

    Article  PubMed  CAS  Google Scholar 

  • Itchoda N, Nishizawa S, Nagano H, Kubo T, Mikami T (2002) The sugar beet mitochondrial nad4 gene: an intron loss and its phylogenetic implication in the Caryophyllales. Theor Appl Genet 104:209–213

    Article  PubMed  CAS  Google Scholar 

  • Jakucs E, Naar Z, Szedlay G, Orban S (2003) Glomalean and septate endophytic fungi in Hypopterygium mosses (Bryopsida). Cryptogamie Mycol 24:27–37

    Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    PubMed  CAS  Google Scholar 

  • Keren I, Bezawork-Geleta A, Kolton M, Maayan I, Belausov E, Levy M, Mett A, Gidoni D, Shaya F, Ostersetzer-Biran O (2009) AtnMat2, a nuclear-encoded maturase required for splicing of group II introns in Arabidopsis mitochondria. RNA 15:2299–2311

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Yoon MK (2010) Comparison of mitochondrial and chloroplast genome segments from three onion (Allium cepa L.) cytoplasm types and identification of a trans-splicing intron of cox2. Curr Genet 56:177–188

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Eckert-Ossenkopp U, Schmiedeberg I, Brandt P, Unseld M, Brennicke A, Schuster W (1994) Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J 6:447–455

    Article  PubMed  CAS  Google Scholar 

  • Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159

    Article  PubMed  CAS  Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    Article  PubMed  CAS  Google Scholar 

  • Knoop V (2010) Looking for sense in the nonsense: a short review of non-coding organellar DNA elucidating the phylogeny of bryophytes. Trop Bryol 31:50–60

    Google Scholar 

  • Knoop V, Ehrhardt T, Lättig K, Brennicke A (1995) The gene for ribosomal protein S10 is present in mitochondria of pea and potato but absent from those of Arabidopsis and Oenothera. Curr Genet 27:559–564

    Article  PubMed  CAS  Google Scholar 

  • Knoop V, Unseld M, Marienfeld J, Brandt P, Sünkel S, Ullrich H, Brennicke A (1996) copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585

    PubMed  CAS  Google Scholar 

  • Knoop V, Volkmar U, Hecht J, Grewe F (2010) Mitochondrial genome evolution in the plant lineage. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 3–29

    Google Scholar 

  • Kobayashi Y, Knoop V, Fukuzawa H, Brennicke A, Ohyama K (1997) Interorganellar gene transfer in bryophytes: the functional nad7 gene is nuclear encoded in Marchantia polymorpha. Mol Gen Genet 256:589–592

    PubMed  CAS  Google Scholar 

  • Kohchi T, Umesono K, Ogura Y, Komine Y, Nakahigashi K, Komano T, Yamada Y, Ozeki H, Ohyama K (1988) A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts. Nucleic Acids Res 16:10025–10036

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Bock R (2009) Transposition of a bacterial insertion sequence in chloroplasts. Plant J 58:423–436

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Nebel M (2005) The evolution of mycorrhiza-like associations in liverworts: an update. New Phytol 167:330–334

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kubo N, Arimura S (2010) Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms. DNA Res 17:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV (2007) Key transitions in animal evolution: a mitochondrial DNA perspective. Integr Comp Biol 47:734–743

    Article  PubMed  CAS  Google Scholar 

  • Levings CSI, Pring DR (1976) Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science 193:158–160

    Article  PubMed  CAS  Google Scholar 

  • Li L, Wang B, Liu Y, Qiu YL (2009) The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 68:665–678

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A (2011) Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics 12:163

    Article  PubMed  CAS  Google Scholar 

  • Logan DC (2010) The dynamic plant chondriome. Semin Cell Dev Biol 21:550–557

    Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron CM (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12:9249–9261

    Article  PubMed  CAS  Google Scholar 

  • Malek O, Knoop V (1998) Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Malek O, Brennicke A, Knoop V (1997) Evolution of trans-splicing plant mitochondrial introns in pre-permian times. Proc Natl Acad Sci USA 94:553–558

    Article  PubMed  CAS  Google Scholar 

  • Manchekar M, Scissum-Gunn K, Song D, Khazi F, McLean SL, Nielsen BL (2006) DNA recombination activity in soybean mitochondria. J Mol Biol 356:288–299

    Article  PubMed  CAS  Google Scholar 

  • Manna E, Brennicke A (1986) Site-specific circularization at an intragenic sequence in Oenothera mitochondria. Mol Gen Genet 203:377–381

    Article  CAS  Google Scholar 

  • Mower JP, Bonen L (2009) Ribosomal protein L10 is encoded in the mitochondrial genome of many land plants and green algae. BMC Evol Biol 9:265

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Kohchi T, Ohyama K (1992a) Mitochondrial DNA of Marchantia polymorpha as a single circular form with no incorporation of foreign DNA. Biosci Biotechnol Biochem 56:132–135

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992b) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y (2009) Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens. Plant Cell 21:1182–1194

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33:6235–6250

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (1998) The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha. J Mol Biol 276:745–758

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437–440

    Article  CAS  Google Scholar 

  • Parkinson CL, Mower JP, Qiu YL, Shirk AJ, Song K, Young ND, dePamphilis CW, Palmer JD (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73

    Article  PubMed  CAS  Google Scholar 

  • Pombert JF, Keeling PJ (2010) The mitochondrial genome of the entomoparasitic green alga Helicosporidium. PLoS One 5:e8954

    Article  PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS, Hu WW, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 74:2904–2908

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Palmer JD (2004) Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol 59:80–89

    PubMed  CAS  Google Scholar 

  • Qiu YL, Cho YR, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Ran JH, Gao H, Wang XQ (2010) Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol Phylogenet Evol 54:136–149

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson AG, Handa H, Moller IM (2008) Plant mitochondria, more unique than ever. Mitochondrion 8:1–4

    Article  PubMed  CAS  Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–830

    Article  PubMed  CAS  Google Scholar 

  • Regina TM, Quagliariello C (2010) Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms. Plant Physiol Biochem 48:646–654

    Article  PubMed  CAS  Google Scholar 

  • Regina TM, Picardi E, Lopez L, Pesole G, Quagliariello C (2005) A novel additional group II intron distinguishes the mitochondrial rps3 gene in gymnosperms. J Mol Evol 60:196–206

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin I, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31

    Article  PubMed  CAS  Google Scholar 

  • Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu X, Melake-Berhan A, Huot CH, Puiu D, Rosovitz MJ, Khouri HM, Beckstrom-Sternberg SM, Allan GJ, Keim P, Ravel J, Rabinowicz PD (2011) Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS One 6:e21743

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Moreno L, González VM, Benjak A, Martí MC, Puigdomènech P, Aranda MA, Garcia-Mas J (2011) Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics 12:424

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    Article  PubMed  CAS  Google Scholar 

  • Rüdinger M, Polsakiewicz M, Knoop V (2008) Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat (PPR) proteins in jungermanniid but not in marchantiid liverworts. Mol Biol Evol 25:1405–1414

    Article  PubMed  CAS  Google Scholar 

  • Rüdinger M, Szövényi P, Rensing SA, Knoop V (2011) Assigning DYW-type PPR proteins to RNA editing sites in the funariid mosses Physcomitrella patens and Funaria hygrometrica. Plant J 67:370–380

    Article  PubMed  CAS  Google Scholar 

  • Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165:567–579

    Article  PubMed  CAS  Google Scholar 

  • Salone V, Rüdinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T (2004) The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics 272:247–256

    Article  PubMed  CAS  Google Scholar 

  • Schuster W, Brennicke A (1987a) Plastid DNA in the mitochondrial genome of Oenothera: intra- and interorganellar rearrangements involving part of the plastid ribosomal cistron. Mol Gen Genet 210:44–51

    Article  CAS  Google Scholar 

  • Schuster W, Brennicke A (1987b) Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J 6:2857–2863

    PubMed  CAS  Google Scholar 

  • Scott I, Logan DC (2011) Mitochondrial dynamics. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 31–63

    Chapter  Google Scholar 

  • Scotti N, Maréchal-Drouard L, Cardi T (2004) The rpl5-rps14 mitochondrial region: a hot spot for DNA rearrangements in Solanum spp. somatic hybrids. Curr Genet 45:378–382

    Article  PubMed  CAS  Google Scholar 

  • Sederoff RR, Levings CS, Timothy DH, Hu WW (1981) Evolution of DNA sequence organization in mitochondrial genomes of Zea. Proc Natl Acad Sci USA 78:5953–5957

    Article  PubMed  CAS  Google Scholar 

  • Seif E, Leigh J, Liu Y, Roewer I, Forget L, Lang BF (2005) Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res 33:734–744

    Article  PubMed  CAS  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Shedge V, Davila J, Arrieta-Montiel MP, Mohammed S, Mackenzie SA (2010) Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiol 152:1960–1970

    Article  PubMed  CAS  Google Scholar 

  • Signorovitch AY, Buss LW, Dellaporta SL (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genet 3:e13

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, Alverson AJ, Storchova H, Palmer JD, Taylor DR (2010a) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 10:274

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR (2010b) Extensive loss of RNA editing sites in rapidly evolving silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 185:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD (1984) Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes. Nucleic Acids Res 12:6141–6157

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD (1986) Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nucleic Acids Res 14:5651–5666

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N (2007) The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 24:699–709

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Zheng J, Hu S, Yu J (2006) The rice mitochondrial genomes and their variations. Plant Physiol 140:401–410

    Article  PubMed  CAS  Google Scholar 

  • Timothy DH, Levings CS, Pring DR, Conde MF, Kermicle JL (1979) Organelle DNA variation and systematic relationships in the genus Zea: Teosinte. Proc Natl Acad Sci USA 76:4220–4224

    Article  PubMed  CAS  Google Scholar 

  • Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002a) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002b) The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol 19:24–38

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 25:1566–1575

    Article  PubMed  CAS  Google Scholar 

  • Ullrich H, Lättig K, Brennicke A, Knoop V (1997) Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plant Mol Biol 33:37–45

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Vangerow S, Teerkorn T, Knoop V (1999) Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol 1:235–243

    Article  CAS  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. J Mol Evol 41:563–572

    Article  PubMed  CAS  Google Scholar 

  • Volkmar U, Knoop V (2010) Introducing intron locus cox1i624 for phylogenetic analyses in bryophytes: on the issue of Takakia as sister genus to all other extant mosses. J Mol Evol 70:506–518

    Article  PubMed  CAS  Google Scholar 

  • Volkmar U, Groth-Malonek M, Heinrichs J, Muhle H, Polsakiewicz M, Knoop V (2011) Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade. Plant Biol (Stuttg) 39:2890–2902

    Google Scholar 

  • Wahrmund U, Groth-Malonek M, Knoop V (2008) Tracing plant Mitochondrial DNA evolution: rearrangements of the ancient mitochondrial gene cluster trnA-trnT-nad7 in liverwort phylogeny. J Mol Evol 66:621–629

    Article  PubMed  CAS  Google Scholar 

  • Wahrmund U, Quandt D, Knoop V (2010) The phylogeny of mosses – addressing open issues with a new mitochondrial locus: group I intron cobi420. Mol Phylogenet Evol 54:417–426

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Wu YW, Shih AC, Wu CS, Wang YN, Chaw SM (2007) Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol Biol Evol 24:2040–2048

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Xue J, Li L, Liu Y, Qiu YL (2009) The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Curr Genet 55:601–609

    Article  PubMed  CAS  Google Scholar 

  • Wang DY, Zhang Q, Liu Y, Lin ZF, Zhang SX, Sun MX, Sodmergen (2010) The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance. Plant Cell 22:2402–2416

    Article  PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Article  PubMed  CAS  Google Scholar 

  • Wikström N, Pryer KM (2005) Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. Mol Phylogenet Evol 36:484–493

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes–though this be madness, yet there’s method in’t. J Exp Bot 61:657–671

    Article  PubMed  CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    Article  PubMed  CAS  Google Scholar 

  • Xue JY, Liu Y, Li L, Wang B, Qiu YL (2010) The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr Genet 56:53–61

    Article  PubMed  CAS  Google Scholar 

  • Yamato K, Ogura Y, Kanegae T, Yamada Y, Ohyama K (1992) Mitochondrial genome structure of rice suspension culture from cytoplasmic male-sterile line (A-58CMS): reappraisal of the master circle. Theor Appl Genet 83:279–288

    Article  Google Scholar 

  • Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Zanlungo S, Quinones V, Moenne A, Holuigue L, Jordana X (1994) A ribosomal protein S10 gene is found in the mitochondrial genome in Solanum tuberosum. Plant Mol Biol 25:743–749

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S, Yu J (2012) The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS One 7:e30531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Knoop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Knoop, V. (2012). Seed Plant Mitochondrial Genomes: Complexity Evolving. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_8

Download citation

Publish with us

Policies and ethics