Skip to main content

Programmed Cell Death in Fetal Oocytes

  • Chapter
  • First Online:
  • 626 Accesses

Abstract

In all mammalian species studied, a marked oocyte loss occurs during the fetal life before their enclosure within the primordial follicle. The concept that female mammals are born with all of the oocytes they will ever posses and the consequent notion that the age-related ovarian failure and menopause occur when the oocyte ovarian reserve is exhausted, render particular relevant to understand the reasons and the mechanisms of oocyte demise in the fetal ovary. Over the years, three main hypotheses to explain the cause of fetal oocyte death have been proposed: (1) the number of oocytes formed in the ovary is in excess respect to the supporting cell, (2) the process of cross over central in prophase I, requires critical molecular processes subjected to frequent errors leading to oocyte death and (3) most oocytes could sacrify themselves donating their cytoplasm content to a subset of surviving oocytes. Mainly during the last three decades, researchers have reported evidence favoring each of these hypotheses; thus suggesting that the survival or death of fetal oocytes depends on several conditions and mechanisms. The concept that cell death is a carefully controlled process both at genomic and molecular level termed apoptosis or programmed cell death (PCD) affirming at the beginning of 80 years, stimulated researchers to analyze in more details the morphological and molecular characteristics as well as the kinetics of the fetal oocyte elimination. In the next sections of the present chapter, we will critically review the principal studies carried out, mainly in the mouse, in our and other laboratories that are slowly disclosing the complexity of the fetal oocyte elimination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albamonte MS, Willis MA, Albamonte MI et al (2008) The developing human ovary: immunohistochemical analysis of germ-cell-specific VASA protein, BCL-2/BAX expression balance and apoptosis. Hum Reprod 23:1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Alton M, Taketo T (2007) Switch from BAX-dependent to BAX-independent germ cell loss during the development of fetal mouse ovaries. J Cell Sci 120:417–424

    Article  PubMed  CAS  Google Scholar 

  • Anderson RA, Robinson LL, Brooks J et al (2002) Neurotropins and their receptors are expressed in the human fetal ovary. J Clin Endocrinol Metab 87:890–897

    Article  PubMed  CAS  Google Scholar 

  • Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc Roy Soc London Ser B 158:417–433

    Article  CAS  Google Scholar 

  • Bakken AH, McClanahan M (1978) Patterns of RNA synthesis in early meiotic prophase oocytes from fetal mouse ovaries. Chromosoma 67:21–40

    Article  PubMed  CAS  Google Scholar 

  • Beaumont HM, Mandl AM (1961) A quantitative and cytological study of oogonia and oocytes in the fetal and neonatal rat. Proc R Soc London (B) 155:557–579

    Article  Google Scholar 

  • Bergeron L, Perez GI, Macdonald G et al (1998) Defects in regulation of apoptosis in caspase-2 deficient mice. Genes Dev 12:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Borum K (1961) Oogenesis in the mouse: a study of the meiotic prophase. Exp Cell Res 24:2495–2507

    Article  Google Scholar 

  • Burgoyne PS, Baker TG (1985) Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal dysgenesis in XO women. J Reprod Fertil 75:633–645

    Article  PubMed  CAS  Google Scholar 

  • Castedo M, Ferri KF, Kroemer G (2002) Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 9:99–100

    Article  PubMed  CAS  Google Scholar 

  • Coucouvanis EC, Sherwood SW, Carswell-Crumpton C et al (1993) Evidence that the mechanism of prenatal germ cell death in the mouse is apoptosis. Exp Cell Res 209:238–247

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Susin SA, Zamzami N et al (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739

    PubMed  CAS  Google Scholar 

  • De Felici M (2000) Regulation of primordial germ cell development in the mouse. Int J Dev Biol 44:575–580

    PubMed  Google Scholar 

  • De Felici M, Di Carlo A, Pesce M et al (1999) Bcl-2 and Bax regulation of apoptosis in germ cells during prenatal oogenesis in the mouse embryo. Cell Death Differ 6:908–915

    Article  PubMed  CAS  Google Scholar 

  • De Felici M, Lobascio AM, Klinger FG (2008) Cell death in fetal oocytes: many players for ­multiple pathways. Autophagy 4:240–242

    PubMed  Google Scholar 

  • de Vries S, Baart EB, Dekker M et al (1999) Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Gene Dev 13:523–531

    Article  PubMed  Google Scholar 

  • Doneda L, Klinger FG, Larizza L et al (2002) KL/KIT co-expression in mouse fetal oocytes. Int J Dev Biol 46:1015–1021

    PubMed  CAS  Google Scholar 

  • Faddy MJ, Gosden RG, Gougeon A et al (1992) Accelerated disappearance of ovarian follicles in mid-life: implication for forecasting menopause. Hum Reprod 7:1342–1346

    PubMed  CAS  Google Scholar 

  • Flaws JA, Hirshfield AN, Hewitt JA et al (2001) Effect of Bcl-2 on the primordial follicle endowment in the mouse ovary. Biol Reprod 64:1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Forabosco A, Sforza C, De Pol A et al (1991) Morphometric study of the human neonatal ovary. Anat Rec 231:201–208

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cruz R, Roig I, Robles P et al (2009) ATR, BRCA1 and gammaH2AX localize to unsynapsed chromosomes at the pachytene stage in human oocytes. Reprod Biomed Online 18:37–44

    Article  PubMed  CAS  Google Scholar 

  • Ghafari F, Gutierrez CG, Hartshorne GM (2007a) Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one. BMC Dev Biol 7:87. doi:10.1186/1471-213X-7-87

    Article  PubMed  Google Scholar 

  • Gondos B (1978) Oogonia and oocytes in mammals. In: Jones RE (ed) The vertebrate ovary. Plenum, NY

    Google Scholar 

  • Greenfeld CR, Pepling ME, Babus JK et al (2007) BAX regulates follicular endowment in mice. Reproduction 133:865–876

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Sato E, Li X et al (2002) Induction of apoptosis mediated by fas receptor and activation of caspase-3 in MRL-+/+ or MRL-lpr/lpr murine oocytes. Zygote 10:17–22

    Article  PubMed  CAS  Google Scholar 

  • Hansen KR, Knowlton NS, Thyer AC et al (2008) A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 23:699–708

    Article  PubMed  Google Scholar 

  • Harada H, Andersen JS, Mann M et al (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98:9666–9970

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne GM, Lyrakou S, Hamoda H et al (2009) Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol Hum Reprod 15:805–819

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Han CS, Yu FQ et al (2005) Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol Reprod Dev 70:82–90

    Article  PubMed  CAS  Google Scholar 

  • Kasai S, Chuma S, Motoyama N et al (2003) Haploinsufficiency of Bcl-x leads to male-specific defects in fetal germ cells: differential regulation of germ cell apoptosis between the sexes. Dev Biol 264:202–216

    Article  PubMed  CAS  Google Scholar 

  • Kennedy SG, Wagner AJ, Conzen SD et al (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11:701–13

    Article  PubMed  CAS  Google Scholar 

  • Keeney S, Neale MJ (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34:523–5

    Article  PubMed  CAS  Google Scholar 

  • Klinger FG (2002) Cell cycle control during embryonic gametogenesis and mechanisms of apoptotic regulation in murine fetal oocytes. PhD Thesis

    Google Scholar 

  • Klinger FG, De Felici M (2002) In vitro development of mouse growing oocytes from fetal oocytes: stage-specific regulation by stem cell factor and granulosa cells. Dev Biol 244:85–95

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  • Liu CF, Parker K, Yao HH (2010) WNT4/beta-catenin pathway maintains female germ cell survival by inhibiting activin betaB in the mouse fetal ovary. PLoS One 5(4):e10382

    Article  PubMed  Google Scholar 

  • Lobascio AM, Klinger FG, De Felici M (2007a) Isolation of apoptotic mouse fetal oocytes by Annexin V assay. Int J Dev Biol 51:157–60

    Article  PubMed  CAS  Google Scholar 

  • Lobascio AM, Klinger FG, Scaldaferri ML et al (2007b) Analysis of programmed cell death in mouse fetal oocytes. Reproduction 134:241–252

    Article  PubMed  CAS  Google Scholar 

  • Lyrakou S, Hultén MA, Hartshorne GM (2002) Growth factors promote meiosis in mouse fetal ovaries in vitro. Mol Hum Reprod 8:906–911

    Article  PubMed  CAS  Google Scholar 

  • Manova K, Nocka K, Besmer P et al (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069

    PubMed  CAS  Google Scholar 

  • Matikainen T, Perez GI, Zheng TS et al (2001) Caspase 3 gene knockout defines cell lineage specificity for programmed cell death signalling in the ovary. Endocrinology 142:2468–2480

    Article  PubMed  CAS  Google Scholar 

  • Maurer U, Charvet C, Wagman AS et al (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21:749–60

    Article  PubMed  CAS  Google Scholar 

  • Modi DN, Sane S, Bhartiya D (2003) Accelerated germ cell apoptosis in sex chromosome aneuploid fetal human gonads. Mol Hum Reprod 9:219–225

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Manganaro TF, Tao XJ et al (1999) Requirement for phosphatidylinositol-3’-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology 140:941–949

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Maravei DV, Bergeron L et al (2001) Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of ataxia telangiectasia-mutated (Atm) gene function. Cell Death Differ 8:614–620

    Article  PubMed  CAS  Google Scholar 

  • Morrison LJ, Marcinkiewicz JL (2002) Tumor necrosis factor alpha enhances oocyte/follicle apoptosis in the neonatal rat ovary. Biol Reprod 66:450–457

    Article  PubMed  CAS  Google Scholar 

  • Nichols SM, Bavister BD, Brenner CA et al (2005) Ovarian senescence in the rhesus monkey (Macaca mulatta). Hum Reprod 20:79–83

    Article  PubMed  CAS  Google Scholar 

  • Paredes A, Romero C, Dissen GA et al (2004) TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary. Dev Biol 15:430–439

    Article  Google Scholar 

  • Pelzel HR, Schlamp CL, Nickells RW (2010) Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 11:62. doi:10.1186/1471-2202-11-62

    Article  PubMed  Google Scholar 

  • Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicols. Dev Biol 234:339–351

    Article  PubMed  CAS  Google Scholar 

  • Perez GI, Robles R, Knudson CM et al (1999) Prolongation of ovarian life span into advanced chronological age by Bax-deficient. Nat Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Farrace MG, Piacentini M et al (1993) Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 118:1089–1094

    PubMed  CAS  Google Scholar 

  • Pesce M, Farrace MG, Amendola A et al (1997) In: Tilly JL, Strauss JF III, Tenniswood M (eds) Cell Death in Reproductive Physiology. Springer, New York

    Google Scholar 

  • Ratts VS, Flaws JA, Kolp R et al (1995) Ablation of Bcl-2 gene expression decreases the number of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 136:3665–3668

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Shen L, Ren C et al (2005) Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol 281:160–170

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues P, Limback D, McGinnis LK et al (2009) Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137:709–720

    Article  PubMed  CAS  Google Scholar 

  • Rucker EB, Dierisseau P, Wagner KU et al (2000) Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 14:1038–1052

    Article  PubMed  CAS  Google Scholar 

  • Sakata S, Sakamaki K, Watanabe K et al (2003) Involvement of death receptor Fas in germ cell degeneration in gonads of Kit-deficient Wv/Wv mutant mice. Cell Death Differ 10:676–686

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  PubMed  CAS  Google Scholar 

  • Songyang Z, Baltimore D, Cantley LC et al (1997) Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci USA 94:11345–11350

    Article  PubMed  CAS  Google Scholar 

  • Spears N, Molinek MD, Robinson LL et al (2003) The role of neurotrophin receptors in female germ-cell survival in mouse and human. Development 130:5481–5491

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Snow MH (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 64:133–147

    PubMed  CAS  Google Scholar 

  • Tease C, Hartshorne G, Hultén M (2006) Altered patterns of meiotic recombination in human fetal oocytes with asynapsis and/or synaptonemal complex fragmentation at pachytene. Reprod Biomed Online 13:88–95

    Article  PubMed  Google Scholar 

  • Thomson TC, Johnson J (2010) Inducible somatic oocyte destruction in response to rapamycin requires wild-type regulation of follicle cell epithelial polarity. Cell Death Differ. doi:doi:10.1038/cdd.2010.49

    PubMed  Google Scholar 

  • Tingen C, Kim A, Woodruff TK (2009) The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol Hum Reprod 15:795–803

    Article  PubMed  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O et al (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Vaskivuo TE, Anttonen M, Herva R et al (2001) Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab 86:3421–3429

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Gioia Klinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Klinger, F.G., De Felici, M. (2011). Programmed Cell Death in Fetal Oocytes. In: Cell Death in Mammalian Ovary. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1134-1_8

Download citation

Publish with us

Policies and ethics